AD-A278 687 E
MENERERE o St

California

Synthesis of Asynchronous Systems from
Data Flow Specifications

Tzyh-Yung Wuu, USC-ISI
Sarma B. K. Vrudhula, UA-ECE ?

ISVRR-93-366
December 1993

DTIC

ELECTE
APR 2 81994

LR i --..‘———.‘..—_J

INFORMATION

SCIENCES 310/1822-1511
INSTITUTE 4676 Admiralty Way/Marina del Rey/California 90292-6695

Best
Available

Copy

/>

ISI Research Report
ISI/RR-93-366
December 1993

Synthesis of Asynchronous Systems from
Data Flow Specifications

Tzyh-Yung Wuu, USC-ISI
Sarma B. K. Vrudhula, UA-ECE

ISI/RR-93-366
December 1993
DTiC
ELECTE |
APR 2 81994 ;
Accesion For G
NTIS CRA&I g U
DTIC TAB
Unannounced O

Justification 4-1 231 A
g?stf ibution | \\\\@\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Availability Codes

. Avail and|or
Dist Special

Al

This research was sponsored in part by the Advanced Research Projects Agency under contract number MDA903-"
92-D-0020 and in part by a grant from the National Science Foundation under award number MIP-9111206. Views
and conclusions contained in this report are the authors' and should not be interpreted as representing the official
opinion or policy of ARPA, NSF, the U.S. Government, or any person or agency connected with them.

DTIC QUALITY INSFECTED 3

REPORT DOCUMENTATION PAGE o o

OMB NO. 87950188
Pubiie e IS (97 il GoRNe 6f HISAREINN 15 GEIINEINGE (D erartge ¢ S0UT POF FEIRGRES. IR The NG $0F NMANNY MENUIRGAL. SeaEiing SEATY S
m—ﬂ-w.“ﬂ“-——-::.—-n m‘l‘-.‘:-— WD S GEIIMASS OF %y
other SURNES 85 WS SoNSSNER & 199 TRONETY IS SUPUS 5 WIS eSaUUneS Servase. 15¢ WEURESRSS QUSRS
ane Aesemns, 1315 Jettwes Oume NghEEY. Sulle VA 223004300, ang 1 he ONins ¢! manegemen An SuSpet. Fuserwart Actuing Frajen IT04-0108)
Wesheagiea, OC 20563
1. AGENCY USE OMLY (Lese Slans) lmmi' 3. REPORT TYPE AND OATES COVERED

1993, Dec. Research Report

4. TITLE AND SURTITLE

$. FUNDING NUMAERS
Synthesis of Asynchronous Systems for Dara
Flow Specifications

MDA903-92-D-0020

 ALTHONS) MIP-9111206
Wuu, Tzyh-Yung and Vrudhula, Sarma B.K.

7. PERFORINING CRAAMIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGAMIZATON

USC INFORMATION SCIENCES INSTITUTE REPORT MAAIRER
4676 ADMIRALTY WAY ISI/RR-93-366
MARINA DEL REY, CA 90292-6695

9. SPONSORINGAIONITONING AGENCY NAMENS) AND ADDRESMES) 10. SPONSORINGASOISITOMRING
ARPA AGENCY REPOAT MAMIER
3701 N. Fairfax Drive
Arlington, VA. 22203-1714

19. SUPPLEMEINTARY NOTES

12A. DISTRIBUTIONAVALABLLITY STATEMENT 128. DISTRIBUTION CODE

UNCLASSIFIED/UNLIMITED

13. ABSTRACT (Menswum 3@ wen)This report presents a method for automatic systhesis of
asynchronous digital systems from high-level data flow specifications. We presents an
extended data flow model that accurately reflects the behavior of the asynchronous
components so that the data flow specification can be directly mapped into a hardware :
realization. In addition, we develop a timing model for the basic asynchronous building
blocks and show how to derive the timing parameters of a composed systems. This timing
model can also be used at the data flow level, allowing designers to explore various
design alternatives. We then describe a number of applications of the data flow .
specification for high-level synthesis such as schemes for resource sharing local trans-,
formations for data flow description optimization, and allocation and sequencing of . !
operations for given rescources. Finally, we present two examples using this synthesis
method. The effectiveness of the data flow specification and performance analysis.has
been demonstrated from the areas and the simulation of actual lavouts generated using

an industrial standard cell library and commercial CAD tools.
|14 SUBJECT TERMS 15. NUMBER OF PAGES
Asynchronous circuits/systems, Data flow graph, Token,Micropipelines, 73
Handshaking protocol, Resource sharing, Algorithmic transformations,
Sequencing and allocation. 18. PRICE CODE
17. SECURITY CLASSIFICTION 18. SECURITY CLASSIFICATION { 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORY OF TMIS PAGE OF ABSTRACT
UNLIMITED
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
v T T S ——— —
NSN 7640-01-200-6600 Stanoare Form 298 (Rev. 2-49)
Presonpes by ANSI Sid. Z39-18

298102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reoprts. it is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet

optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month,a nd year, if available (e.g. 1
jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If

applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitie. A titie is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitie for the specific volume. On
ciassified documents enter the titie classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program
element numbers(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C -Contract PR - Project

G -Grant TA -Task

PE - Program WU - Work Unit
Element Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this shouid follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the repor.

Block 9. Sponsoring/Monitoring Agency Names(s)

and Address(es). Self-explanatory

Block 10. Sponsoring/Monitoring Agency
Report Number. (if known)

Block 11. Supplemeniary Notes. Enter

information not included eisewhere such as:
Propared in cooperation with...; Trans. of ...; To be
published in... When a report is revised, include

a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.

Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD -See DoDD 5230.24, “Distribution
Statements on Technical
Documents.”

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA - Leave blank.

NTIS -Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-

explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contins classified
information, stamp classification on the top and
bottom of the page.

Block 20. n of Abstract. This block must

be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. if blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

Synthesis of Asynchronous Systems from
Data Flow Specifications

Tzyh-Yung Wuu Sarma B. K. Vrudhula
(a.k.a. Sarma Sastry)
Information Science Institute ECE Dept.
Univ. of Southern California Univ. of Arizona
wuu@lepton.isi.edu sarmaQkashi.ece.arizona.edu
Abstract

This report presents a method for automatic synthesis of asynchronous digital systems
from high-level data flow specifications. We present an ertended data flow model that ac-
curately reflects the behavior of the asynchronous components so that the data flow spec-
ification can be directly mapped into a hard are realization. In addition, we develop a
timing model for the basic asynchronous building blocks and show how to derive the timing
parameters of a composed system. This timing model can also be used at the data flow
level, allowing designers to explore various design alternatives. We then describe a number
of applications of the data flow specification for high-level synthesis such as schemes for
resource sharing, local transformations for data flow description optimization, and alloca-
tion and sequencing of operations for given resources. Finally, we present two examples, a
16-bit multiplier and a 16-point FIR digital filter, where the number of modules have been
altered at the data flow level using this synthesis method. The effectiveness of the data flow
specification and performance analysis has been demonstrated from the areas and the back-
annotated simulation of actual layouts generated using an industrial standard cell library
and commercial CAD tools.

1 Introduction

This paper presents a method for the automatic synthesis of asynchronous digital systems.
The input is a data flow specification of the system’s behavior and the result is a design with
sufficient detail to permit fabrication. Existing approaches focus primarily on the synthesis
of asynchronous control circuits. Our work emphasizes asynchronous systems such as micro-
processors or special purpose processors used in image and signal processing applications,
where there is an enormous potential for concurrent computations at the function level. Qur
approach uses a data-driven model to describe the functional behavior of asynchronous sys-
tems. In this model, the data flow specification frees the designer from having to identify
concurrent activities and their synchronization explicitly, thus allowing complete exploitation
of concurrency. More importantly, our data-driven model allows the various system measures
such as delay and area to be incorporated in the high-level specification. This enables the
designer to rapidly explore many design alternatives at the data flow level, examining the

tradeoff between performance and area. Furthermore. these high-level design decisions can
be replaced by design automation algorithms, namely. high-level synthesis {11, 13].

There are three main aspects of a synthesis system: the specification. the realization and
the methods. The specification deals with developing a suitable representation of the abstract
behavior. The realization is a representation of the system in terms of a set of interconnected
components. The methods are a collection of techniques that translate a specification to a
realization.

We start by describing the components of the realization. That is, we first describe
the basic building blocks of the asynchronous system. The data communication of these
building blocks is controlled by the handshaking protocol. We then show that the handshaking
protocol can be accurately described by the token of a data flow model. Next we describe the
abstract specification. Here we present the classical data flow graph (DFG) representation
as the behavior specification of asynchronous systems in our synthesis method. With the
consideration of hardware (register) cost, we derive an extended data flow graph (EDFG)
based on the same token-handshaking model. The structure of the EDFG is very similar to
the structure of the DFG. However, the semantics of the EDFG are defined to comply with
the behavior of the asynchronous circuits without registers. We also show that each function
node in a DFG corresponds to a composition of register nodes and a non-registered node
in an EDFG. Thus the EDFG provides a bridge between an abstract specification and the
implementation. After having discussed the two ends of the synthesis system, we describe
the methods for translating an EDFG to a realization. This is done with respect to a given
library of components. Then we develop a timing model for the basic building blocks and
show how to derive the timing parameters for any composition of the building blocks. This
timing model is applied to the data flow representation. After defining the input specification
and its timed behavior model, we present several synthesis methods at data flow level to help
designers explore different design alternatives. Sharing schemes are templates in a DFG to
share a resource or resources by the same type of operations. Local transformations perform
peephole optimization/reduction in a DFG specification. According to sharing schemes and
their performance/area effects, allocation and sequencing algorithms allocate operations in a
DFG to a given set of modules and order the sequence of operations which share a common
module. By applying these synthesis methods, designers may obtain various designs with
the objective of minimizing delay, throughput, or area.

Our design procedure of asynchronous systems is shown in Figure 1. This paper focuses
on the top half of this design procedure, especially the data flow specification, its timed
behavior model, and its relation to the realization and the synthesis methods. The details
of realizations and synthesis algorithms are deferred to future papers. Our layout imple-
mentation relies on the MOSIS netlist-to-parts service {35, 36]. This paper is organized as
follows. Section 2 reviews related work. Section 3 identifies the basic building blocks of the
realization and maps their behavior into a data flow model. Section 4 describes the data
flow specification DFG and the extended specification EDFG. Section 5 constructs a timing
model for the building blocks and the function node for the DFG/EDFG. By using this
timing model, designers are able to analyze the system performance and other system mea-

sures at data flow level. Section 6 presents several synthesis methods using the DFG/EDFG
specification, and their effect in terms of performance and area can be easily determined.
Section 7 presents two detailed examples to demonstrate our design method. This includes
the DFG specification, various design alternatives that are possible with the given DFG.
and mapping the various designs to obtain a number of realizations. These design alterna-
tives are implemented with a standard cell library and their performance and area costs are
presented. The last section presents a conclusion for this work.

Input Specification

(Data Flow Graph) |~ """ f
Methods L -
High-Level Synthesisy™ """ i
§ Asynchronous
: building block
E library

Realization e eemmaenan :
(RTL Netlist) o nececcans \

‘

é
MOSIS s -
Netlist-to-Parts)w------vecoeeennes -
Service @/ {7 ’

Physical Layout [«----------- :

Figure 1: Overview of our design system.

2 Background

Much of the classical work done in asynchronous design has focused primarily on gate level
control circuits. Methods for realizing such circuits are based on the Huffman model [10, 17]
of a finite state machine (FSM). Such an approach is practical only for relatively small
circuits. Moreover, the FSM model cannot describe concurrent behavior at any higher level.

During the past five years there has been a tremendous resurgence of interest in the design
of large scale asynchronous system [16] and more recently in the automatic synthesis of such
systems [5, 6, 21]. An important aspect of certain types of asynchronous designs is that they

make it feasible to carry out large system design in a truly modular fashion by composing
independently-designed components and ensuring correctness by construction [26, 30}. In the
area of asynchronous design there appear to be two approaches. One approach focuses on the
design of reliable asynchronous circuits. e.g.. hazard-free asynchronous circuits and delay-
insensitive circuits. These methods are based on the manipulation of formal specifications
such as signal transition graphs (STG) and Petri nets [7, 14, 15, 21, 23]. The other approach
focuses on the synthesis of asynchronous systems by the interconnection of pre-defined asyn-
chronous modules. These methods attempt to translate a high-level language specification
such as CSP, CSP-liked descriptions, OCCAM. or Trace structures {1. 5. 6. 9. 30} into a
realization. The main task in these synthesis approaches is to correctly decompose/refine
the given behavior description into atomic constructs, which have corresponding pre-defined
asynchronous modules. However, much work done in the decomposition of asynchronous sys-
tems has mainly focused on the synthesis of control circvits. There appears to be little work
done in synthesis of both control and data paths of asynchronous systems. In particular,
problems related to the incorporation of system level performance measures in the high-level
specification and the synthesis of asynchronous systems that take into account constraints
on the availability of resources have not been dealt with adequately. It is necessary for the
designer to explore these various design alternatives. The goal of our research is to tackle
these design issues at system level.

Our approach the resembles those approaches presented in [13, 19, 20] in the design
specification and the mapping method. However, our approach is different from theirs in the
following sense. Their basic modules are synchronous circuits. In their approach, each node
in the data flow graph maps to a unique hardware module. Due to the physical limitation
of VLSI, they implement module selection techniques to reduce the area of a design. They
partition the nodes of a data flow graph into multiple groups so that each group can be
implemented on a chip. Our basic modules are instead asynchronous circuits. In our model,
a token in a DFG represents not only data but also the synchronization state between
modules, i.e., the state of handshaking signals between modules. Despite the difference of the
basic circuit models between their approach and our approach, the ideas of module selection
and system partition are important and applicable in our design procedure. However, we
emphasize the module utilization more in this research. In order to satisfy constraints on
area and/or performance we develop techniques for scheduling and allocation over the nodes
in a DFG. Therefore, a node representing an operator (or a hardware module) in the final
EDFG may correspond to more than one node representing an operation (or a computation)
in the original DFG specification.

3 Hardware Implementation and Data Flow Model

The hardware model that is employed here is based on Sutherland’s Micropipelines [28]. This
model assumes that request signals are bundled with the data signals to ensure proper oper-
ation, namely, the bundled data convention. Unlike speed-independent and delay-insensitive
designs, the micropipeline model requires determination of the delays in the computational
blocks. This does not pose any serious problem, as this can be done in a manner similar to

Sender —A Receiver

(a) Data transfer between two blocks

o0 0 ©0 0 00 00
. @ . 0 60 00
| . | A e
Acoovesgs[|,
{b) Two-phase handshaking {(c) Four-phase handshaking

Figure 2: Data transfer and handshaking protocol.

the conventional design of synchronous systems.

A system consists of a collection of functional blocks with data transfers taking place
between two or more functional blocks or between a functional block and the surrounding
environment. Data transfers between any two blocks rely on a handshaking protocol. Each
block will be activated whenever its input data is available. Therefore, the operations of
functional blocks in micropipelines are asynchronous, concurrent, and data-driven.

3.1 Data Transfers and Handshaking Protocols

The handshaking protocol used in our design method can be a two-phase and/or a four-phase
handshaking protocol. These are shown in Figure 2.

Our current implementation follows the two-phase handshaking protocol with the bundled
data convention [26, 28]. Referring to Figure 2(b) we see that there are three events in each
cycle of data transfer. First, valid data is put on the data bus by the sender. Second, a signal
transition is activated on the request line by the sender to notify the receiver that data is
available. Third, a signal transition is activated on the acknowledge line by the receiver to
notify the sender that the data has been received so that another cycle of the data transfer
can begin.

For the four-phase handshaking protocol shown in Figure 2(c), the request line and the

5

(4] 0____j L—

Figure 3: The behavior of Muller C-element.

acknowledge line are initialized to 0 at the start of each cycle of data transfer. The first three
events are the same as those in the two-phase handshaking protocol. The next two events
are that the request is reset to 0 by the sender and that the acknowledge is reset to 0 by the
receiver. In terms of the period of data validation, there two kinds of conventions for the four-
phase handshaking protocol [4]. In the narrow convention, the sender holds the data valid
from the rising request signal to the rising acknowledge signal. In the broad convention, the
sender holds the data valid from the rising request signal to the falling acknowledge signal.
Although our current implementation follows the two-phase handshaking protocol with the
bundled data convention, a system may contain different protocols for different data transfers
in its implementation, as long as the sender and the receiver of each data transfer follow the
same protocol 1.

3.2 Realization of a Basic Block

A functional block as proposed by Sutherland [28] has the structure shown in Figure 5(a).
There are three basic elements in this structure. The Muller C-element, represented by a “C”
gate, is used to control the handshaking protocol. The asynchronous register, represented by
a “reg” block, is used to capture and pass input data. The computational part, represented
by a “Logic” block, is used to perform the functional computation for the structure, e.g.,
addition. The oval node in this structure represents an added delay, which is used to ensure
that the output data transfer satisfies the bundled data convention.

Muller C-element There are two inputs and one output for a Muller C-element. The
output of a C-element is 1 if all the inputs are 1, and it is 0 if all the inputs are 0; otherwise
its value remains unchanged [26]. A two input C-element can be viewed as a logical and of
two events, where an event can be a 0-1 or a 1-0 ‘ransition [28]. This behavior is shown in
Figure 3 2.

Asynchronous register The asynchronous register proposed by Sutherland is defined as
follows. There are four terminals for the register. “Di” and “Do” are the data input terminal
and the data output terminal of the register; “c” and “p”, which are called capture and pass

1The broad convention and the narrow convention of the four-phase handshaking protocol are two different
protocols.
2Circuit delay is not considered in this figure.

th Di3’
|
pi o] o2 [os] o | ois

Di
|
= — - I
p——w
] p ’ L_
Do

Do Dn| o | ois | piz | ois

Figure 4: The behavior of asynchronous register.

respectively, are two one-bit control signals of the register. If the value of “c” equals the
value of “p”, then the value of “Di” is passed to “Do”; otherwise the value of “Do” remains
unchanged. Operationally, “c” and “p” are initialized to 0, then signal transitions (events)
occur at “c” and “p” in the sequence of cpcp.... This behavior is shown in Figure 4 3. In
the operation of the asynchronous register, event “c” always captures input data to let the
output hold the last input value befor~ event “c”, e.g., Dil’ and Di3’ in Figure 4 are captured
by “c” events; event “p” starts the passing mode of the register, e.g., Dil, Di3, and Di5 in
Figure 4 are passed to “Do”.

Computational part The computational part can be implemented by combinational
logic, however, added delay is required to ensure the handshaking protocol. The compu-
tational part can also be implemented by differential cascode voltage switch logic (DCVSL)
without added delay [21]. DCVSL is suitable for four-phase handshaking operation; there-
fore, we aeed to have two-to-four and four-to-two phase change circuits to make this kind
of circuit useful in two-phase design. The bundled data convention and the bounded delay
model are used here primarily to save silicon area and the design time for the computational
parts.

Combining Muller C-elements and asynchronous registers forms the pipeline structure
of asynchronous systems, i.e., micropipelines [28]. We take a single stage from Sutherland’s
micropipelines as a basic functional block in our system, and it is shown in Figure 5(a). “Ri”,
“Ai”, and “Di” correspond to input request signal, input acknowledge signal, and input data
signals; “Ro”, “Ao”, and “Do” correspond to output request signal, output acknowledge
signal, and output data signals. The input/output behavior of the basic block is shown in
Figure 5(b). Operationally, “Ri”, “Ai”, “Ro” and “Ao” are initialized to 0. Notice that there
is an inversion at one of the inputs at Muller C-element; it means that there is an initial
event at that input. Therefore, event “Ri” will generate an event at the output of the Muller
C-element, which will capture the input data “Di”. After passing through the register, this

3Circuit delay is not considered in this figure.

Input data is captured.
O _/ @@ N © ®
DDK(I)ML

Ri Di Ai
foo o FOR
c 5] R
p.r.eﬂ....——‘I One cycle One cycldof input data Ihansfer Ong cycie
nb ;
© é ® é
Logic O - W,
4+ mb
Ao Do Ro
one cycle of output data transfer * Omne cycle
(a) Block diagram (b) Timing diagram
g

Figure 5: The basic block of micropipelines.

event will pass to “Ai” to notify the input data transfer that “Di” is stored, i.e., its value
can be change. In other words, one cycle of input data transfer is complete. The captured
input is presented at the output of the register, which is then operated on the computational
part. The added delay is to ensure that the valid data is produced before the arrival of event
“Ro”. Therefore, the added delay equals the critical path delay of the computational purt
plus some safe margin delay. Event “Ao” will complete one cycle of output data transier,
and it allows the register to pass new input data to the functional block. After “p” of the
register receives an event from “Ao”, the Muller C-element receives an (initial) event to allow
another cycle of input data capture. In case the new “Di” and “Ri” have arrived before the
transfer of output data is completed, the Muller C-element will wait until another input of
the C-element receives an (initial) event from “Ao” through “p” of the register.

3.3 Data Flow Model for Basic Blocks

The main reason to use data flow specification in our system is that the behavior of basic
blocks of asynchronous systems can be described by a data flow model. We view each basic
block as a functional unit. Data is available at the input of the block and is captured by the
block, data is produced at the output of the block, which becomes the i »ut data of another
functional block. The behavior of the basic block is analogous to the be. ior of a functional
node in a data flow graph, which absorbs input tokens and generates output tokens. This

.....

.""“ @ - “'
Frll o
E Di Ri Al !
T RN 9)
LT N
basichlock | | TTTTeeeeeeee basic block
Do Ro Ao ‘

Do Ro Ao *
Calculation
* ‘ mode .
(Transient
‘ states)

. ii l!i Ai \ /
AT [|

L

[Di Ri A
basic block
. - = - ' Do Ro Ao
} Di Ri Ai H
t \ basic block / f l T
........... @ i '; fi pol i@ J
(a) The behavior of a basic block (b) Data flow model

Figure 6: Data flow model for basic blocks.

analogy is shown in Figure 6.

Figure 6(a) shows a sequence of states to describe the same input/output behavior of the
basic asynchronous block that Figure 5(b) describes, where labels 1, 2, and 3 represent the
sequence of events - data available, the request signal transition, and the acknowledge signal
transition of the two-phase handshaking protocol. Each state in Figure 6(a) represents that
the block has just received or produced an event, which is denoted by a numbered circle, and
is waiting for next event. The two states which are grouped together at the left of Figure 6(a)
correspond to an idle functional node in the data flow model. Although there is input data
available at the last state of this group, the block has not been notified of the availability
of input data by the external world 4. Only when event “Ri” is activated by the external
world, the basic block knows that there is data available at “Di”. Therefore, the top center
state in Figure 6(a) corresponds to a data flow function node with an input token. After the
block captures the input data and completes its calculation, the block produces an output
data, and the external world is notified by event “Ro”. Therefore, the state at bottom center
of Figure 6(a) correspond to the output token generated in the data flow model. After the
external world releases the output data by activating event “Ao”, the block becomes idle

4The external world means the surrounding environment of the basic block.

again. Two transient states in Figure 6(a) are not mapped into the data flow model. and
they represent the functional operation in the real circuit which takes time. However, they
can be ignored in the high-level data flow model and are represented by a proper timing
mode] for system analysis.

Handshaking protocol and token model The key of this analogy is to model the data
transfer, which is based on two-phase handshaking protocol, by the token movement in the
data flow model. Referring to Figures 2(a) and 2(b), the data transfer between event 2
(Request) and event 3 (Acknowledge) is the state that the data is available on the data bus
and is waiting to be captured by the receiver. This state is mapped into an appearance
of a token between two function nodes in the corresponding data flow graph; the token
is generated by the function node which corresponds to the sender block, and it will be
absorbed by the function node which corresponds to the receiver block. Later, we will derive

the extended data flow graph based on the same token model.

4 Data Flow Specification

The data flow graph (DFG) is used as the input specification, and it is based on the token
mode] used in data flow computing [8]. In this section, we briefly describe the structure and
semantics of the DFG used in our synthesis system.

A DFG is a directed graph with typed nodes and port-specific arcs, where port refers
to the input/output terminals of a node. Each node in a DFG belongs to a finite set of
node types which represent the basic constructs of the DFG specification. Each directed
arc in a DFG connects a specific output port of a node to a specific input port of a node.
The semantics of a DFG are expressed by the movement of tokens. A token represents the
presence of data on the corresponding input. A node is activated when all its necessary
input arcs have tokens. An activated node computes or fires by absorbing all the tokens on
its inputs and placing tokens on its outputs. There is no notion of synchronization among
activated nodes, as these nodes operate asynchronously and concurrently [8].

4.1 Basic Constructs

By considering area/performance efficiency of asynchronous block implementation, we have
generalized and enriched the basic DFG constructs, which are shown in Figure 7, from the
conventional data flow specification. For example, the conventional data flow specification
often uses binary input {or output) control constructs such as the Distributor and the Selec-
tor. To distribute one data to one of eight destinations, we would need to use three levels of
these two-input Distributors. In terms of delay and area consumption, we found it is more
efficient to implement a single block to handle one-to-eight distribution than to use three
levels of the two-input Distributors. To distinguish from the conventional constructs in data
flow specification, we prefix the names of these multiple input/output control constructs with
“M”. These enhancements imply that the set of basic constructs may grow in the future as
long as the new constructs satisfy the data flow model and they are needed in the description

10

imewi Input Port i : istri
" put Po MlJoin MDistributor
.J." Output Port MFork Q MSelector

——= Data Flow Path

@ Atomic Function

Figure 7: Basic constructs of the DFG.

Arbiter (i’)’ Pass(<cond>)

Macro Function

X R B

of asynchronous systems °. The behavior of the basic constructs shown in Figure 7 are given
below.

MJoin: If there is a token at each input, MJoin absorbs all the input tokens and
generates an output token. The output token represents all data values from all input
tokens.

MPFork: If there is an input token, MFork absorbs the input token and generates a
token on each of its output with the same data value as on the input.

MDistributor: If there is a token at the data input port and a token at the condition
input port carrying the value m, MDistributor absorbs both input tokens and generates
a token at output port m with the same value as on the data input port.

MSelector: If there is a token at input port m and a token at the condition input port
carrying the value m, MSelector absorbs both input tokens and generates an output
token with the same data value as on input port m.

Pass({cond)): If there is a token at the data input port and a token at the condition
input port, Pass({cond)) absorbs both input tokens, and generates an output token
with the same data value as on the data input if the condition data equals (cond).

Arbiter: If there exist token(s) at the input port(s) and there is no token at the
output port, one and only one input token is absorbed and passed to the output port.

Atomic functions: These represent computational nodes, e.g., adders, multipliers,
and so on.

5The minimum set of basic constructs is not very meaningful for a hardware description language.

11

¢ Macro function: A macro function represents a function defined by another data
flow graph, and it supports hierarchical description.

There are three rules regarding the data flow specification and its behavior model:
1. At most one token is allowed on an arc at any time.

2. Every basic construct can absorb tokens from its input port(s) only if no token is
present at any of its output arcs. In other words, no tokens are allowed to accumulate
in any of the basic constructs.

3. No recursive (macro) function is allowed in our system.

4.2 Data Types

Since the goal is to transform or translate DFG descriptions into hardware realizations, each
data item has a fixed format as specified by the data type. For example, the input and the
output of a 16-bit adder have certain data formats, e.g., the input contains two 16-bit data,
and the output contains a 1-bit carry-out and a 16-bit sum. There are three basic data
types:

1. A null data type is denoted by null.
2. A set of n-bit wire data types is denoted by nb, where n is a positive integer.

3. Group data types are denoted by {g1,92,-..,9m), where each g; is a null data type, or
a wire data type, or another group data type.

The following items in a DFG are data typed: input/output ports, directed arcs, and tokens.
If an output port is connected to an input port through a directed arc, the output port, the
input port, the directed arc, and tokens which flow through the arc should have the same
data type. The data type of an input/output port depends on what kind of function this
node is. For example, a 16-bit adder may have input data type (16b,16b) and output data
type (1b,16b).

Except atomic functions, macro functions, and MJoin, input ports, excluding the con-
ditional input, and output ports of any construct have the same data type. MJoin absorbs
tokens from all inputs and generates a token representing all input tokens. If n inputs of
MJoin from left to right have data types t,%,...,t,, then the data type of the output is
(t1,t3,...,t,). During the manipulation of a DFG, a data type may be reduced to an equiv-
alent data type. (g;) is equivalent to g1, and (g1,92,...19j-1, 95, 9i+1,- - -, gm) i equivalent
to (g1,92,- - -+ 9j=1,Gi+15- - -, gm) if g; is a null data type. A data type is primitive if it is
neither a group data type containing null data type(s) nor a group data type containing only
one data type. Every data type is equivalent to a unique primitive data type. Hence only
primitive data types are considered during the manipulation of DFG constructs, e.g., MJoin
shown in Figure 8.

12

null 8b Join of null and 8b is <null,8b>
@ <null,8b> is equivalent 10 <8b>.
o <8b> is equivalent 10 8b.

Figure 8: Example: manipulation of data types.

There is no distinction between a data signal and a control signal in our system. A
control signal in the conventional data flow graph is an one-bit data signal which carries
either true (logic 1) or false (logic 0), i.e., its data type is 1b. Furthermore, we generalize
control signals to be nb, which can control multiple (2") input/output choices.

In a DFG, each token carries a data value. The data value of a type null token is (). A

valid value of a type nb token is (z;,...,z,), where each z; for 1 <1 < n is any valid value
on a wire, e.g., 0, 1, and X. A valid data value of a group data type (g1,92,--.,9m) token
is (v1,v2,...,Um), where v; is a valid value of data type g; for 1 < 7 < m. For example,

the valid values of a 8b token are (z,,;, z3, 24, Ts, T6, 27, 28)’s with each z; € {0,1, X} for
1 £ ¢ £ 8. Similarly, the valid values in (4b,4b) are ((z,, 22, Z3,4), (¥1,Y2,Y3,y4))’s with
zi,yi € {0,1,X} for 1 <7 < 4. Both of the above two data types are implemented as eight
wires in hardware, but they may represent different meanings in the DFG. For example, the
former may be an 8-bit integer, and the latter may be two 4-bit integers.

4.3 The Need of Extended Data Flow Graph

In Section 3.3 we use a data flow graph to model basic blocks in micropipelines. Conversely,
we can translate a DFG description into an asynchronous system, which is composed of basic
blocks. However, each input port of every block needs a register to latch data, so this kind
of implementation may result in many registers. For example, the two-input addition DFG
description in Figure 9 can be directly translated into the implementation by mapping nodes
MJoin and ADD into blocks. In this example, there are two levels of registers. In terms of
area and performance efficiency, we don’t need both levels of registers. Therefore, removing
the input register of the ADD block yields an implementation with better performance and
smaller area.

4.3.1 Register Blocks and Computational Blocks

In order to reduce the cost of registers, we separate registers from basic blocks of mi-
cropipelines. Two basic blocks are defined: the register block and the computational block,
shown in Figure 10(a). Their input/output behaviors are shown in Figure 11, where the
variables D,si, Dy, D,p, Djp, and Dy, are delays between events which will be defined later.

In terms of input/output events, the behavior of the register block is exz ly the same

13

F<16b,16b>

ADD O“"
*db.lﬂ»
Ao Do Ro

Figure 9: Two-input addition.

as the basic block of micropipelines. On the other hand, the input events and the output
events of a computational block are closely related. Because there is no storage in the
computational block, the input data cannot be released until the output data is released.
Therefore, a complete output event cycle of the two-phase handshaking protocol occurs
between event “Ri” and event “Ai” of the input event cycle. In other words, event “Di” is
followed by event “Ri”, which is followed by event “Do”, which is followed by event “Ro”,
which is followed by event “Ao”, which is followed by event “Ai”. Figure 12(a) shows the
sequence of input/output events.

4.3.2 Extended Data Flow Model for Computational Blocks

Since the behavior of the functional block without storage differs from the original functional
block of micropipelines, a phantom node is used to represent the corresponding data flow
construct for the computational block in Figure 10(b). Using the same handshaking protocol-
token analogy in Section 3.3, we define the extended data flow model for computational blocks
as shown in Figure 12. Each state in Figure 12(a) represents that the block has just received
or produced an event and is waiting for the next event. The left two states in Figure 12(a)
correspond to an idle phantom functional node in the extended data flow model. When event
“Ri” occurs, the computational block is notified by the external world that an input data is
available at “Di”. Because there is no memory in the computational block, the value of “Di”
has to be kept valid by the external world until the corresponding output data is released,
i.e., event “Ao” occurs. Therefore, the right three states in Figure 12(a) correspond to a
phantom functional node with an input token. When valid data is produced at “Do”, the

14

Ao Do Ro
Register block

Ai Di Ri

{w

-

Ao Do Ro
Computational block

(a) Decomposed basic blocks

Logic O"“'

C

Storage

{namé

Atomic function

(b) Corresponding
EDFG constructs

Figure 10: The structure of the basic blocks.

@

O 00
i

O]
©

g

|

L

1

£
I

9
®
e
#l
3
£

ra .

0

(a) The timing diagram of register block

0l0) o0

Di i
@ @

R [| S
§ O ®

et)
. .
@O I

mmo§ . H
HE ¢) I :

R [i [
= Q ' ®

(b) The timing diagram of computational block

Figure 11: The behavior of the basic blocks.

15

P L LR L L T LN sesvsccsnenasmsana

©) : @ o
* * input token
Di Ri A D Ri A
Logic Logic :
Ro Ao Do Ro Ao :

..............

L ! !
\ip e\, /

\
} P
‘l’ l ? Di Ri A | l
Di ki A Logic :
Logic Do Ro Ao | fnamen —— fnamel
Do Ro i ' . -",' .. -",n

li-o Rlo Ao i I?l'o Ro Ao i ifnamé
®@ . O %’
Resetmode = = ~TTTreteossssasese
(Transient state)
(a) The behavior of a computational block (b) Extended data flow model

Figure 12: Extended data flow model for computational blocks.

external world is notified by event “Ro”. Therefore, the bottom right state in Figure 12(a)
corresponds to a phantom functional node with an output token. After the external world
releases the output data by activating event “Ao”, the computation block activates event
“Ai”, and the block becomes idle again. Figure 12(b) is the corresponding extended data
flow model for the computational block. Unlike the conventional data flow model, an input
token is not absorbed when the corresponding output token is produced; the input token
is removed when the corresponding output token is absorbed by the external world. The
output token looks like an extension of the input token through the phantom node, so the
output token is called an eztended token (of the input token). One transient state in Figure
12(a) is not mapped into the extended data flow model, and the computational block is reset
in this state. In the implementation shown in Figure 10(a), “Ai” is directly connected to
“Ao”, so this transient state takes zero delay®. However, it may remain some time in this
reset state if the computational block is implemented by DCVSL. As stated previously, the
transient state can be ignored in the high-level data flow model and is taken care of with a

6 Assume that wiring delay can be ignored.

16

N . b’.;.,'.sm
imeme Input Pont Phantom : Ce— Phantom

e J(;ml MJoin 23 MDistributor
<+ Phantom 3} Phantom
i Output Port Forkl \fECTK “..seiecor. O MSelector
..... : 7N)
._.-. '_t‘
——= Data Flow Path X) i'}ﬁ'i',?,m P"' gﬁ?(?(?&nb)

[)
" .t . X Hl “ e
.ﬁ';n Atgnrrtl?g‘Funcnon Macro Function Storage

Figure 13: Basic constructs of EDFG.

proper timing model for system analysis.

4.4 Extended Data Flow Graph

After separating the register from the micropipeline structure, we now describe a simple but
very useful extension to the DFG to describe these new basic blocks. The result is called
an ertended data flow graph (EDFG), which provides a bridge between the abstract DFG
specification and the circuit implementation. The set of basic constructs in EDFG are shown
in Figure 13.

Syntactically an EDFG is the same as a DFG. However, the semantics of an EDFG are
defined so as to comply with the hardware behavior of asynchronous circuits. The essential
difference is in the rules that govern the movement of tokens. Based on the extended data
flow model described in Section 4.3.2, the behavior of EDFG is described as follows. There
are two kinds of tokens, namely, regular tokens and extended tokens. Both kinds of tokens
represent where data is available. A regular token represents the data that is the direct
output token of a register, and it is denoted by a dark circle. An extended token represents
the data that is the output token of a non-register node, and it is denoted by a circle.
The behavior of Storage, the only non-phantom construct in the EDFG, is the same as the
behavior model described in the DFG; a Storage absorbs input tokens, which are either
regular or extended, and generates regular output tokens with the same values as the input
tokens. The behavior of a phantom construct in the EDFG is similar to the behavior of the
corresponding non-phantom construct in the DFG except for the following differences:

e Input tokens to a phantom node can be regular or extended.
e A phantom node generates only extended tokens.

o When a phantom node generates output tokens, it does not absorb its input tokens.

17

..........

~

'. ‘ .
B ..
oo ' .
Fork! : @ A new *upput token
' can amve i these states.

Lef Right output token i .

is W 7N \qngedofy?u other node. / IR .
A 1. 1
:'Forkl — :Fork,l — Forkl @

7N\ 7\ £\

—

Right out /zﬁoutltokenis \. ---------- .’

token ﬁ“if‘h k1 absorbed bfu other node - .
Fork) -

S 2

State diagram of phantom MFork Partial state diagram of MFork

Figure 14: An example - comparison of EDFG to DFG.

@ ~ ¢

g -

‘Fork}

AN

Figure 15: A MFork equals a phantom MFork with an input Storage.

o A token on the input of a phantom node can be absorbed only if all its extended tokens
are absorbed.

Figure 14 shows the basic differences in the movement of tokens in an EDFG and the corre-
sponding DFG. After the output tokens are generated, the input arc of an MFork in the DFG
can receive a new data token, but the input arc of phantom MFork in the EDFG cannot
receive a new data token until all its output tokens are absorbed.

Extended tokens and regular tokens In terms of the availability of data and the anal-
ogous meaning to the handshaking protocol, there is no difference between the extended
token and the regular token. The purpose of defining extended tokens is to emphasize the
semantic difference between phantom nodes and non-phantom nodes, which are used in the
conventional data flow graph [8], and it is also to emphasize the relation among input data
and output data of phantom nodes.

18

DFG vs. EDFG A DFG node is equivalent to its phantom counterpart with an input
storage at each input port, e.g., the MFork/phantom MFork in Figure 13. Since a DFG
description can be replaced by an EDFG description, why do we need the DFG? The first
reason is that the DFG lets designers focus on the functional description without worrving
about the hardware implementation, e.g., how many adders, where to assign registers, and
so on. The DFG is also a well-known language/concept for data flow computing, so it can
be easily adopted by designers. Another reason is for the convenience of system synthesis.
DFG and EDFG are used in the different stages of asynchronous system synthesis in our
system. The DFG is mainly used in the early steps of system synthesis such as sequencing
and allocation, mapping of sharing schemes, and local transformation. where a register is
assumed for every data transfer. The EDFG is mainly used in the synthesis steps such as
register minimization, deadlock prevention, and local transformation before the specifications
are mapped to hardware modules. Notice that partitioning the synthesis procedure into steps
is not unique and that the tasks of the synthesis steps are usually closely related (11, 18].

4.5 Hardware Translation — Syntax-Directed Method

We adopt the syntax-directed method [5, 6] to realize the physical design from the ertended
data flow graph (EDFG) specification. In this method, each basic construct in the high-
level specification is directly translated into a corresponding hardware module. Therefore,
the data flow graph not only describes the behavior of a system but also represents the
structure of the system. By using this method, the correctness of a hardware implementation
is proven by construction. Therefore, the design method mainly focuses on mapping the
constructs and the behavior models of the EDFG description into the functional/control
blocks of the micropipeline structure, and on reflecting the hardware characteristics of the
functional/control blocks to the parameters of the DFG constructs.

Translating EDFG constructs into asynchronous components A path in an EDFG
is mapped to a two-phase handshaking data transfer bus, including a data bus (wires) with
the same data type, a request line, and an acknowledge line. A token, either regular or
extended, on a data flow path corresponds to the state in which the data and the request
have been sent but the acknowledge has not been received by the sender. This correspondence
allows us to design a component corresponding to each construct in a EDFG, ensuring that
the interface requirement is satisfied. Thus there is a one-to-one correspondence between
the elements of an EDGF and the hardware modules (see Figure 16). We have developed all
the mappings in our cell library [32], e.g., Figure 17 shows a design for the 4-output MFork.

Hardware properties in EDFG Since each basic construct of EDFG is directly mapped
into an asynchronous module, the hardware properties of this asynchronous module are
attached to its corresponding node in a EDFG description: (1) Dys(n;) is the forward latch
time of register node n;; (2) Dyy(n:) is the backward latch time of register node n;; (3) Dyp(n;)
is the propagation delay time of register node n;; (4) Dy,(n;) is the forward propagation delay
time of phantom node n;; (5) Dsp(ni) is the backward propagation delay time of phantom
node n;; (6) S(n;) is the area cost of node n;; and (6) others. These properties can be used for

19

system analysis in a high-level data flow description. Furthermove. designers and synthesis
algorithms can make design decisions in a high-level data flow description based on these
attached hardware properties.

EDFG Basic Blocks
ab
Data Flow = RR e o D=o>
Ack -
Phantom PN . 5
Atomic Function 'fm" Seo) frame |F>
ab #nb

Phantom ~"'.a'i;‘.'i&{°?“’-..& disibutor b
Distributor “.I__F C T LC X9

'b‘ &‘b ub# #ub

Figure 16: Generic basic blocks.

Fad
-

nb

[

I TTYS T Uy

{ot—

I

DIR1 A D2R2A2 D3R3A}

&
el

g
3
S

Figure 17: Block design for 4-output MFork.

5 Timing Model for Data Flow Specification

A high-level specification is useful not only to describe the functional behavior of systems,
but also to analyze/predict the resulting implementation. In this section we first use timed
Petri nets [25] to model the timing behavior of basic blocks. Then we showed that the
composition of these timed Petri net models can be used to express the timing behavior

20

of asynchronous systems which are composed of basic blocks. Based on the timing models
derived from timed Petri nets, the timing parameters and the timing behaviors of both DFG
and EDFG are defined.

5.1 Timing Behavior Model for Basic Blocks

There are three kinds of basic blocks. referred to as the register block. the computational
block and the control block. The circuit structures of register blocks and computational
blocks have been shown earlier. Control blocks are those basic blocks corresponding to
phantom constructs in EDFG which have more than one input and/or more than one output.
e.g., asynchronous blocks of MSelector. If we consider the joining of multiple events in
control blocks as “an event”, the behavior of a control block is the same as the behavior of
a computational block. For example, a two-input MJoin can be activated only if both input
request events arrive. The event of “both input request events occur” is equivalent to the
input request event of a computational block. Therefore, we only need to model the register
block and the computational (non-register) block.

Since the data transfer between blocks follows the two-phase handshaking protocol. the
data value is always valid from event request to event acknowledge. Therefore, we only need
to model the event of control signals. There are four events associated with the register and
computational block:

Ri: input data ready - this corresponds to the input “request” signal transition.

Ai: input data done - this corresponds to the input “acknowledge” signal transition.
Ro: output data ready - this corresponds to the output “request” signal transition.

Ao: output data done - this corresponds to the output “acknowledge” signal transition.

The timing behavior of basic blocks is most easily described using timed Petri nets [25],
where transitions represent input/output (control) events of the block, and places represent
the conditions of events in the block. The delay from a place (state) to a transition (event),
which is labeled on the arc between them, represents the minimum time interval from when
the condition is satisfied to when the transition is activated. The state of the block is
represented by the distribution of tokens in the timed Petri net. Figure 18 shows the timed
Petri net models for the register block and the computational block, where the tokens of
each model represent the initial state of the corresponding block. By simulating the token
movement in each Petri net, we can easily find the relation among Figures 18(a) and 6(a)
and 11(a) for the register block, and the relation among Figures 18(b) and 12(a) and 11(b)
for the computational block.

Timing parameters There is a delay associated with each pair of sequential events. These
delays are shown in Figures 11 and 18. The timing paraineters for a register block are defined
as follows:

21

D, :

Dy :

D,y :

Ri Ai Ri Ai

L]

. Comp./
Register Contlzol
Ro Ao Ro Ao
Ri Ro
: [811 O~
% l (82]
< Ri Ao
(811 -l-

HMO«—i D, —
Ai

(a) Register block (b) Non-register block

Figure 18: Timing model for asynchronous blocks.

forward latch time is the time for the register to latch the input data when the register
is ready and the new data just arrives. This corresponds to the delay from Ri to Ai in
the Petri net, where the post-Ri condition represents that input data is ready.

backward latch time is the time for the register to latch the input data when the input
data is ready and the register just becomes available. This corresponds to the delay

irom Ao to Ai in the Petri net, where the post-Ao condition represents that the register
is ready.

propagation delay time is the time from when the input data is latched to when the
output data becomes valid. This corresponds to the delay from Ai to Ro in the Petri
net.

The timing parameters for a non-register block are defined as follows:

Dy, :

Dy, :

forward propagation delay is the time from when all required input data are valid to
when all corresponding output data are valid. This corresponds to the delay from Ri
to Ro in the Petri net.

backward propagation delay is the time from when the output data is being acknowl-
edged to when the input data being acknowledged. This corresponds to the delay
from Ao to Aiin the Petri net.

22

In addition to the basic delay parameters associated with each block. there are two delayvs
associated with the environment. These are denoted by é1 and ¢2. 81 is define as the delay
from Ai to Ri. This is the time between the input acknowledge event (completion) to the
next input request event (starting). Similarly, 02 is defined as the delay between Ro to
Ao. This is the time from the output request (starting) to the next output acknowledge
(completion). Both 61 and 62 depend on the response from the environment of the block
and are not delays constrained by the hardware implementation of a block, so we bracket
the notations.

5.2 Timing Behavior of Composed Blocks

Two kinds of behavior models, the register model and the non-register model, have been
defined to describe the behavior of basic asynchronous blocks. If we can derive the composed
behavior of these two models in timed Petri nets, we will be able to derive the behavior for

any given system. There are four possible combinations of these two models or these two
kinds of basic blocks:

1. The output of a register block is connected to the input of a non-register block.
2. The output of a register block is connected to the input of a register block.
3. The output of a non-register block is connected to the input of a non-register block.

4. The output of a non-register block is connected to the input of a register block.

Let B1 and B2 be two basic blocks. Let event E of block B denoted by E(B), e.g., Ri(B1);
let timing parameter D., of block B denoted by D,.(B), where zz is either of sfl, sbl, sp,
fp, or bp, e.g., Dysi(B1l). When Bl and B2 are connected with the outputs of Bl feeding the
inputs of B2, then synchronization between these two blocks means that Ro(B1) is Ri(B2)
and Ao(B1) is Ai(B2). The behavior of a composed block can be generated by merging the
timed Petri nets of Bl and B2 with Ro(B1) = Ri(B2) and Ao(B1) = Ai(B2). The timed
Petri nets of the four possible combinations are are shown in Figure 19. A formal proof
of the correctness of this composition is not presented in this report. These compositions
will be used to model the delay parameters and the performance analysis in the data flow
specification of the following discussion.

5.3 Performance analysis of linear pipelines

Two measures are defined to evaluate the performance of a system, the completion time and
the throughput rate. The completion time is a measure of how long it takes to complete the
execution of a set of data from inputs to outputs of the system. The throughput rate is a
measure of how many sets of data can be processed by the system per time unit in steady
state. The inverse of the throughput rate is called the pipeline period. Let the completion
time, pipeline period, and throughput rate be denoted by L, P, and R respectively. By
formulating the performance measures for linear pipelines at the block level, we can find a
proper timing model for the high-level data flow specification.

23

RiSBl)

[Il {81(B1))
Oprr iy
D,(B1)

Ao(Bl1 Ro(B1
mAi(B2) D (B2) TsRl(B)

Lysmenn_ j?ma

Ao(B2) Ro(B2)

Register -> Non-register

Ro(B1
=Ri(B2)
1

qu(Bl) |

Dy(B
Ri(B1)
(81B1)

B]

Ao(B1
-Xn((BB)

Ro(B2)

(52(B2)]

Ai(Bl) Ao(B2)

«—k—“{)«l-“—o

Non-register -> Non-register

Rl(Bl)
[81(81)]

Dy, (B1) l-
Ro(B1 Ai(B])

=Ri(B2)
Dy(B1)

.u(BZ)

DyB2)
AO(B2) Ro(B2)

Non-register -> Register

RisB 1)

‘ — {31(B1)}
@vmn
D,,(m?

T = Rx(B)
3.@»0
O r.,.J:
D,,(B2
Ro(B2) ~ 482, (B2

Register -> Register

Figure 19: The behavior of composed blocks.

A linear pipeline is a series of computations divided by registers. Although many systems
are not linear pipelines, each input-output computation path in a system can be viewed as a
linear pipeline. Unlike synchronous systems, the computation time between two consecutive
registers is not fixed. We will analyze the performance for a stage. and then expand the
analysis to the performance of a pipeline.

5.3.1 Performance analysis for a stage

By observing the timed Petri net descriptions in Figure 18 and the descriptions for the
composed block in Figure 19, we found that the event Ai of a register breaks the input and
the output of the register into two loops, with Ai being the join event of the two loops. We
define the parts of hardware described by a loop of events in a Petri net as a stage. Two
timing parameters are defined for each stage. They are the forward propagation delay time
and the backward propagation delay time, which are denoted by FP; and BP, respectively
for stage ¢. The forward propagation delay time of a stage is determined by the timing delay
from Ai of the stage’s input register to Ai of the stage’s output register. The backward
propagation delay time of a stage is determined by the timing delay from Ai of the stage’s
output register to Ai of the stage’s input register. Figure 20 (a) is a simple asynchronous
system with computational blocks Compl and Comp2 between registers Regl and Reg2.
Figure 20 (b) is the composed behavior of this system. In this system, the output of Regl,
and Compl, Comp2, and the input of Reg2 form a stage, and the input of Regl and the
output of Reg?2 also form a stage. The three stages from input to output are labeled stages 0,
1, 2, whose forward and backward propagation delay times are formulated as follows. (Note
that the input 61 (of Regl) and the output §2 (of Reg2) are always assumed to be zero when
we measure the performance of a system. In other words, new data is fed into the system as
soon as the input register is free; output data is removed as soon as it is available.)

FPy = D,p(Regl)

BP, = 0

FP, = D,(Regl)+ Dsy(Compl) + Dys,(Comp2) + D,i(Reg2)
BP, = Dy(Comp2) + Dy(Compl) + Dy (Regl)

FpP, D,,(Reg2)

BPg = D,M(Reg2)

By using these pa.ré,meters, the timing diagram of this system is obtained by simulation, and
it is shown in Figure 21. The measures of L, P, and R can be formulated as follows.

L = FPy+ FP,+max{(FP;, + BP;), BP,} (1)
P = FP +BP, (2)
R = 1/P (3)

There is one further observation from the Petri net description of Figure 20. There is
always one and only one token in each loop of the Petri net. The minimum time for the
token moving around the loop in any stage ¢ is (F P, + BPF;), so the lower bound of pipeline
period is (FP; + BP;). In other words, the throughput rate of stage ¢ is less than or equal

25

Ai. o - Ao
Ri *|Regl _|Compl [| Comp2 — |Reg2 Ro
Di —) — » - Do
Stage 0 E Stage 1 : Stage 2
(a) Block diagram
Ro(Regl) = Ro(Comp1) Ro(Comp?2)
(31RegD] Rn(Colmpl) 3R1(Comp2) A ERx({legZ)
: (Regl} qp(Compl) D;,(Co;npz) Da(Reg? Dl‘j_ Ao(Reg2)
o [52(Reg2)]
Ri(Regl) == Ax(Regl) Ao(Comp2)
Regl) = Ai(Reg2)]-‘ _L
bl
Dbp(COm 1) A Eh(compz) o O—-’ RO(RCSZ)
D,{Reg2)
Ao(Regl) = Ao(Compl)
Ai(Comptl) = Ai(Comp2)

EP:

(b) Timed Petri net description

Figure 20: A simple asynchronous system.

IBR!
|FPj 1BP;
- Completion time
BR,
L FP, 1BPy
LFP.1BP:
LFPy, iR
; L FP, 1BP;;
E LEP2 \BR:
E '&J © o o
| ._Pipeline Period |
; : , _ HEPoy o o
' '<—Lipeline Period

Figure 21: Completion time and throughput analysis of the simple system.

26

Al - Ao

Ri —*|Rego '\ Compl1 *|Regl ™ Comp2| © o Compn *|Reg nf— Ro
Di = » —) — » —> Do
Stage 0 : Stage 1 : o0 Stage n : Stage (n+1)

Figure 22: A linear pipelined system.

to (FP_.-:-BTﬂ’ Since two consecutive stages i and (¢ + 1) have a joint event Ai(Reg?), the
throughput rate of these two stages, which equals the firing rate of event Ai(Regz), is less
than or equal to zpigpy and T FP(.“)iB) Lherefore, the pipeline period of these two
stages ¢ and (i +1) is greater than or equal to (F P; 4+ BP,) and (F Pji4+1)+ BPi41)); the lower
bound of the system pipeline period equals the maximum of (F P; + BP;) for all stage . A
further observation is from the timing diagram in Figure 21. The data forward execution on
a stage is concurrent with the data backward execution on its previous stage, e.g., F P, is
overlapped with BF, in the timing diagram, and FP; is overlapped with BP,. Therefore,
the completion time is mainly determined by the the forward propagation delay time.

5.3.2 Performance analysis of a linear pipeline

From previous analysis, a stage is formed by two registers without any register block between
them. Without loss of generality, a linear pipeline is defined as a series of computation blocks
with a register between any two consecutive computation blocks, as shown in Figure 22. In
this figure, registers are labeled Reg0, Regl, ..., Regn, and the computation block between
Reg(z — 1) and Reg: is labeled Compi for 1 € ¢ < n. There are (n + 2) stages in the system,
and the forward and backward propagation delay times of these stages are defined below.

FPy, = D,s(Reg0)
BPy, = 0
FP, = D,,,(Reg(i - 1)) + D;,,(Compi) + D,ﬂ(Regi), forl1<i<n
BP;, = Dyy(Compi)+ Du(Reg(i — 1)), for1<i<n
FPny1y = Dy(Regn)
BPuy1y = D,u(Regn)

By generalizing the result ¢{ the previous example, the performance measures of this system
can be formulated as follo-ws.

n+1
L = Y FPi+ BPn +A,
1=0
where A = max{0, max}_,{BP, - =7*!, | FP; — BPn41y}} (4)
P = ﬁ}éc{(m + BP.)} (5)
R = 1/P (6)

27

: L ey (mput Rived) (dataimched) (new mput
i |DwDa Ro[Dyi R°lllp 1'531

[82]
Ao

]
e 0y 1]
' eephecms

Facd

¥ (register resciling)

. igure 23: Timing model for storage nodes.

In equation (4), A is most likely to be zero because usually Z;‘__‘f,-hl FP; > BP;,. We conve-
niently assume A to be zero.

5.4 Timing Model for DFG/EDFG

After understanding the timing behavior of asynchronous systems at the circuit level, we
defined a timing model for the high-level data flow specification which reflects the behavior
of the low-level implementation. The key to model timed behavior for data flow specification
is the interpretation of tokens in the data flow specification with respect to the events in the
block model, i.e., the token-handshaking protocol relation described in Section 3.3. Since an
EDFG is an abstract representation of an asynchronous system and a DFG description can
be replaced by an EDFG description, we begin with the timing model for EDFG.

5.4.1 Timing Model for EDFG

an EDFG is an abstract representation for an asynchronous system, so the timing parame-
ters, D1, Dyst, Dop, Dyp, and Dyyp, are directly attached to corresponding nodes in the EDFG
description. For storage nodes, D,f/s and (D,siys + Dsp) correspond to input token ab-
sorption time and the time of moving a token from input to output; the usage of D,y or
D,y in the above delay time calculation depends on the state of the storage node when the
input token arrives. The timed state diagram for a storage node is shown in Figure 23,
where each state corresponds to a possible token distribution in Figure 18(a). Two labels
are attached to each directed arc between two states in Figure 23: the delay between the
two states and the event which occurs between two states. For example, S1 in Figure 23

28

N/

:::Join:)
Bly” 7T NG
\/ o 4 miNS N NS
{ Join } {Join) —22 - {joiny —o-te { Join}
1 (513] y/ 1 Ro ? Ao 1
S R\U\ \/ Ri0O g S3 $4
(idle) { Join } (input arrived) (output produced) (resetting)
S2"
Dy
Ai_0 & Ai_l

Figure 24: Timing model for non-storage nodes.

corresponds to the initial token distribution shown in Figure 18(a). After event Ri occurs,
S1 transits to S2 and the time interval between S1 and S2 is §1. S2 in Figure 23 corresponds
to the token distribution of the post-Ri condition and the post-Ao condition in Figure 18(a).
The unshaded part of Figure 23 represents the arrival of input token at the state that the
register does not hold another data, and D,y is the latch time for the token absorption; the
shaded part represents the arrival of input token at the state that the register is holding
another data, and Dy, is the latch time for the token absorption. 61, 62, 63, 64, 65, and 66
are delays associated with environment, where 61, 63, §4, and 85 represent the input token
arrival time and where 62 and 66 represent the output token removal time.

For phantom nodes, Dy, represents the time from the generation of an input token to the
generation of the corresponding output token, and Dy, represents the time from the removal
of an output token to the removal of the corresponding input token. In order to allow the
reader to understand that multi-input/multi-output phantom nodes share the same behavior
of single-input single-output phantom nodes, we present a timed state diagram for a two-
input MJoin in Figure 24, where each state corresponds to a possible token distribution in
Figure 18(b). For example, S1 in Figure 24 corresponds to the initial token distribution
shown in Figure 18(b). After both Ri_0 and Ri.l occur, S1 transits to S2. S2 in Figure 24
corresponds to the token distribution of the post-Ri condition in Figure 18(b).

The timing model described in this section is an enhancement for the (extended) data
flow model in Section 3.3 and Section 4.3.2. Comparing the unshaded part of Figure 23
with Figure 6(b) for the storage node, S3 is an extra state in the timed extended data flow
model, and S3, which is between S2 and S4, describes the transient states in Figure 6(a); S5,
which represents the register resetting state after the removal of the output token, also is an
extra state in the timed model, and it is merged in the idle state ub Figure 6(a). Comparing

29

Figure 24 with Figure 12(b) for the phantom node. S4 is an extra state in the timed extended
data flow model. Again, S4 describes the transient state in Figure 12(a). At this point. the
timed extended data flow model has fully reflected the low-level behavior in the high-level
description.

l } 1

{31} Dsn
Ri Al

S1 S2 S3
(idle) (input arrived) (data computing)
'Qw Ro{Dgp+ Dyp
(82
Ao
S5 S4
(resetting) (output produced)

7

Figure 25: Timing model for DFG nodes.

5.4.2 Timing Model for DFG

Each node in a DFG corresponds to an EDFG phantom node plus a storage at each input
of this EDFG node (see Figure 15). Therefore, we can simply use the timing model of
the EDFG to simulate a DFG. On the other hand, we can develop a timing model for the
DFG by using the timed Petri net model of the composition of the register block and the
non-register block in Figure 19. The timed state diagram for a DFG node is shown in
Figure 25. Comparing it with Figure 6(b), there are two extra states in Figure 25, where S3
corresponds to the transient states for the data latch and the data computation, and where
S5 corresponds to the transient state for functional unit resetting. Based on the analysis
in Section 5.3.2, we further simplify the timing model shown in Figure 26, where we need
only two timing parameters, Drp and Dpp. Referring to Section 5.3.2, D}, in DFpp is the
forward latch time of the output register of the function unit, and D}, in Dgp and D;, in
Drp are the backward latch time and the propagation delay time of the input register of
the function unit. In other words, we adopt the stage delay parameters to the simplified
model. This simplified DFG timing model complys with the data flow model in Section 3.3,
and it reduces the simulation complexity, as well as provides a simpler model for high-level

"The part corresponding to the shaded part in Figure 23 is not shown in this model.

30

synthesis problems.

According to the timed behavior of a DFG/EDFG, we can simulate and analyze a system
from the behavior description. Furthermore, the attached parameters and analysis formula-
tions can be used as measures in a high-level synthesis. These will be discussed in the next
section.

l t l

(81 0
Ri Ai
S1 S2 S3
(idle) (input arrived) (data computing)
|DBP=Dbp+D2b| Ro [Drp= Dy + D+ Dy
[562]
Ao
S5 S4
(resetting) (output produced)

Figure 26: Simplified timing model for DFG nodes.

6 Data Flow Specification for High-Level Synthesis

One of main reasons to use a data flow specification is to have a sound functional and timing
model to describe system behavior so that designers can make design decisions at the high
level. In this section we first discuss the transformations which preserve the functionality
of DFG descriptions and result in different realizations with different performances. Two
kinds of function-preserved transformations are discussed: sharing schemes which provide
design templates to map a DFG to another DFG with fewer atomic function nodes; and local
transformations which are rules to map a substructure of a DFG to another substructure so
that the area and/or the performance of the new DFG is improved. Based on the sharing
schemes in this section and on the performance model described in the previous section,
we address the sequencing and allocation problem in which we want to find sequences and
allocations of atomic functions (of data paths) with optimized or near-optimized system
performance and/or area consumption.

31

6.1 Sharing Schemes

Resource sharing is broadly used to reduce the hardware size as well as the implementation
cost in digital system designs. There are two issues related to resource sharing in the design
process:

1. Allocation - For each operator, what are those operations going to be executed by the
shared operator?

2. Sequencing - For each operator, what is the execution order of those operations which
share the operator?

Here we focus on the transformations of a DFG into another DFG for a given sequence and
allocation of operations under the DFG paradigm, namely, sharing schemes.

In our synthesis system, each node in a DFG is implemented by a hardware module, i.e.,
an operator. Assume that there is no multi-function operator such as an ALU. Therefore, a
sharing scheme will transform an (original) DFG into a (mapped) DFG in the following way:
the same type of V atomic function nodes of the original DFG is replaced by M same type
of nodes with proper control and routing structure in the mapped DFG, where N > M; the
sequence of operations in the original DFG is preserved by the sequence of operations in the
mapped DFG, i.e., system functionality is preserved. There are three parts in each sharing
scheme: the shared unit(s), the control part, and the data routing part, which are together
referred to as the sharing structure. Figure 27 demonstrates an abstract sharing scheme for
N =4 and M = 2. In the mapped DFG, the output of ¢;(¢z) is executed by m;, and this
execution generates an output as the input of ¢s(gs); the output of ¢3(qq) is executed by
mg, and this execution generates an output as the input of ¢7(¢gs). The control part and the
routing part in the sharing structure are used to ensure that the sequence of operations in
the mapped DFG preserves the sequence of operations in the original DFG. Therefore, the
mapped DFG uses fewer functional nodes than the original one, while performing the same
functions; however, the mapped DFG has extra control/routing nodes.

Classification and notation Let the same type of NV atomic function nodes in the original
DFG be labeled vy,v,,...,vn, and the M same type of nodes in the mapped DFG be
labeled my,m,,...,mp. There are two classes of sharing schemes: sharing schemes with
fixed allocation and sharing schemes with dynamic allocation. In sharing schemes with fixed
allocation, the execution of each node v; is assigned to a specific node m;. Let GN; be
the set of v’s assigned to m;, i.e., there are |GN;| operations sharing operator m;. On the
other hand, the execution of each node v; in sharing schemes with dynamic allocation is not
assigned to a specific node m;. Instead, the execution of node v; is dynamically assigned
to any operator m;, which usually is an idle one at the time when the input data of node
v; is available. Let GNj, j,, ., be the set of vs to be dynamically allocated to the set of
k operators m;,,m;,, ..., m;,, where |GNj, j,...i.| > k, i.e., |GNj, j,...;.| operations sharing
the k operators. Without loss of generality, the presentation of following schemes will use
|GN;| = 4 for sharing schemes with fixed allocation and |GNj, ;,...;.] = 4 and k = 2 for
sharing schemes with dynamic allocation. The original four operations for |GN;| = 4 or

32

control & routing

R OO

(a) Before applying sharing scheme (b) After applying sharing scheme

Figure 27: An abstract sharing scheme with fixed allocation for N =4, M =2.

|GN;, ;2| = 4 are shown in Figure 28, where I1, ..., I4 can be either connected to input
port(s) of the original DFG or connected to output(s) of some nodes in the DFG, and O1,
..., O4 can be either connected to output port(s) of the DFG or connected to input(s) of
some nodes in the DFG. For example, one DFG has the four operations connected serially,
e.g., 01, 02, and O3 are connected to [2, I3, and 14 respectively, and I1 and O4 are connected
to the input port and the output port of the DFG.

6.1.1 Sharing Schemes with Fixed Allocation

The problem in a fixed allocation is to map a set of operations into a shared unit (opera-
tor). Figure 27 shows the outline of this kind of sharing scheme. Besides the shared unit,
the control part generates condition tokens to control the data routing part so that these
operations are executed by the shared unit in a certain order. Two ordering schemes for
fixed allocation are presented. One is the scheme with variable sequence, in which the order
of operations processed by a sharing structure is based on the first-come-first-served (FCFS)
ordering scheme. The other is the scheme with fixed sequence, in which the order of opera-
tions processed by a sharing structure is pre-determined by system designers or scheduling
algorithms during the process of high-level synthesis.

Fixed-allocation sharing scheme with variable sequence Figure 29(a) is a fixed-
allocation sharing scheme with variable sequence for |GN;| = 4. In this scheme, an MSelector
and an MDistributor with condition input form the data routing part. Four R([]) functions

33

¥
|
MUL 13
02
14
o !
03
MUL
04
o1

Figure 28: Four operations for |GN| = 4.

and a CFvs4 function form the control part. R([]) is an atomic function which passes the
input token to the output without passing the input data value. CFvs4® is a macro function
which generates condition tokens to indicate which input token is available so that a proper
data path in the data routing part is open. Figure 29(b) is the DFG definition of function
CFvs4, where C({const)) is an atomic function which generates a token with constant data
value (const) if it receives a null data token. For example, 12 has data available, and it
activates the second R([]) to generate a null data token to CFvs4. Due to the token from
the second input of CFvs4, “b01” ® data tokens are generated on both outputs of CFvs4,
and they will open the data route from input 1 of the MSelector to the output 1 of the
MDistributor. In case there is more than one input data available, an Arbiter in CFvs4 will
decide the order of routing paths/operations based on an FCFS ordering scheme.

Fixed-allocation sharing scheme with fixed sequence Figure 30(a) is a fixed-allocation
sharing scheme with fixed sequence for [GN;| = 4, and it is similar to the sharing scheme
in Figure 29(a) except for the control part. CFfs4, which forms the control part of Figure
30(a), is a macro function which generates fixed sequence of condition tokens so that data
paths are open in a pre-determined order. Figure 30(b) is the DFG definition of function
CFfs4, where COUNT4 is an atomic function which generates the next condition token from
the current condition token. In this example, CFfs4 is a two-bit cyclic counter with the ini-
tial value “’b00”, i.e., it generates the sequence of conditional tokens, “/400”, “/b01”, “/b10",
and “b11” repeatedly. Therefore, the order of operations is MUL(I1) followed by MUL(I2)
followed by MUL(I3) followed by MUL(I4). Even though the data at I4 is available before
the data I3, the data at I4 cannot be processed until MUL(I3) is completed. The order of
operations can be changed either by changing the input/output location or by changing the
sequence generator.

8CFvs stands for the control function with variable sequence.
9b, 0, and 'h are used to lead the binary, octal, and hexadecimal numbers respectively.

34

Y

Distributor .

- (opoxe | [oport,
0l 02 03 04
(a) Sharing scheme with fixed allocation (b) Definition of CFvs4

with variable sequence

Figure 29: A sharing scheme with fixed allocation with variable sequence.

rt

- qr
e, P

01 02 €3 04

(a) Sharing scheme with fixed allocation (b) Definition of CFfs4
with fixed sequence

Figure 30: A sharing scheme with fixed allocation with fixed sequence.

35

Functionality preservation In order to show that the mapped DFG preserves function-
ality, we need to show that the order of operation execution in the original DFG is prescrved
by the mapped DFG. In an FCFS ordering scheme, no specific order enforces the operations
which shar: the same operator. In fact, any order of these operations is acceptable to the
sharing structure. Therefore, the mapped DFG which uses the FCFS ordering scheme follows
and preserves the operation execution order of the original DFG. On the other hand. the
sharing scheme with fixed sequence may have a problem preserving the operation execution
order. For example, Il is connected to O2 in the original DFG, so Il has to be executed
after 12 is executed to generate output Q2. Therefore, the sequence provided by Figure
30(b) would not work. In order to use the sharing scheme with fixed sequence, designers and
synthesis algorithms need to give a sequence which preserves original operation ordering.
i.e., data dependency. There are many ways to solve this problem, e.g.. interchanging I1, I2
and interchanging O1, O2 will fix the problem in Figure 30.

b=y

(a) Before applying sharing scheme (b) After applying sharing scheme

Figure 31: A abstract sharing scheme with dynamic allocation for N =4, M = 2.

6.1.2 Sharing Scheme with Dynamic Allocation

The problem in this kind of sharing scheme is to map a set of operations into a set of shared
units (operators) dynamically. Figure 31 shows the outline of this kind of sharing scheme.
In this sharing scheme, the data routing part should have routes from every data input
to every shared unit as well as routes from every shared unit to every data output. The
condition tokens generated by the control part not only need to indicate the input-to-output
to be executed, but also need to indicate which shared unit is used. By generalizing the

36

n 2 13 14

SISISIS
‘0

(£
Selector -

ouT
Selectorc

0

Distributor
0 1 2 3

01 02 03 04

Figure 32: A sharing scheme with dynamic allocation.

operation ordering schemes and creating different operator allocation schemes, there may
be many different kinds of sharing schemes under this category. Here we only present one
sharing scheme. In this sharing scheme, the FCFS ordering scheme is used for the operation
ordering. By assuming that the first started operator is first released, the sequentially cyclic
ordering is used for the operator allocation, i.e., operator 1 to operator k is sequentially
and cyclically allocated. Figure 32 is a sharing scheme with dynamic allocation of this
kind for |GN;, ;,| = 4. In this sharing scheme, the four-input MSelector and the four-output
MDistributor, which control the input-output routing, and the two-output MDistributor and
the two-input MSelector, which control the operator routing, form the data routing part.
Four R([]) functions, function CFvs4, which generate tokens to control the FCFS input-
output routing, and a 1-bit counter CFfs2, which generates tokens to control the operator
routing, form the control part. I is an atomic function which passes input token to output,
and it is used to store a condition token for an unfinished operation in the sharing structure,

37

e.g., there may exist two sets of condition tokens for two operations in the structure at the
same time in Figure 32. For example, [2 has data available first, and it activates the second
R([]) and makes CFvs4 generate “/b01" data tokens to the condition port of the four-input
MSelector and to the condition port of the four-output MDistributor. Meanwhile. CFfs2
generates “’b0” to the condition port of the two-input MDistributor and to the condition
port of the two-output MSelector. Then the data I2 is passed to the input of the left MUL
in Figure 32. If I4 has data available, right after 12 has data available. Because one I at
the output of CFvs4 keeps the condition token /601 for 12, CFvs4 can generate new “/b11"
tokens for I4. Similarly, CFfs2 can generate */b1" after 12 is passed through the two-input
MDistributor of two MULs. Therefore, data at I4 can start being executed by the right
MUL even though the data of I2 is still in the sharing structure.

6.1.3 Sharing Scheme with Micropipelined Shared Unit

A node/function which is micropipelined [28] by being partitioned into a pipeline, i.e., this
node becomes a macro function defined by a series of sub-functions. For example, MUL

01 02 03 04

Figure 33: A sharing scheme with micropipelined shared units.

38

mias A] mi2;s mi2s
LT m— m, m; (B
m; |] m; m,{ 12 []
1) m, [0}

(c) 120 ns / output MUL(I1)

ﬁ
e e

mizs mizs [14]

m; 5 m; []

12 ma m: I
N i N i o

(d) 160 ns / output MUL(I2) (e) 200 ns / output MUL(I3) (f) 240 ns / output MUL(I4)

Figure 34: Timing behavior of micropipelined sharing scheme.

may be partitioned into three sub-functions, MUL;, MUL,, and MUL3, and MUL(z) equals
MUL3(MUL,(MUL,((?)))) for each input ¢, which includes two operands. By using mi-
cropipelined shared units, there are still two classes of allocation methods as stated pre-
viously. However, we may use a fixed allocation sharing scheme with a micropipelined
function unit, whose behavior resembles the behavior of a sharing scheme with dynamic
allocation with multiple shared units. Figure 33 shows a sharing scheme with a three-stage
micropipelined shared unit, and it is a fixed allocation sharing scheme with FCFS ordering
scheme for N = 4 and M = 1. The behavior of Figure 33 is similar to the behavior of
Figure 32 with N = 4 and M = 3. Without considering the control overhead, the timing
and resource usage diagram in Figure 34 shows the behavioral resemblance between these
two schemes, where m; 3 3 represents three stages of the micropipelined shared unit, the exe-
cution time for each stage is 40 nsec, m,;, mz, and mj represent three shared units, and four
operations are executed in the order of I1, 12, I3, and I4.

6.1.4 Effects of Sharing Schemes

Since a sharing scheme is a fixed template with respect to the number of sharing operations,
the number of shared operators, and the kind of scheme, we can easily estimate the effects
of the sharing scheme such as area and performance.

Area Although a sharing scheme maps one DFG into another DFG with fewer atomic
function nodes, some extra nodes are required to form the routing part and the control part
in the mapped DFG. Therefore, the area gain of a mapping equals the area of the eliminated

39

atomic functions; the area overhead of the mapping equals the area of these extira nodes.
Because resource sharing always reduces system performance., if the area overhead is greater
than the area gain, then this mapping should be abandoned.

Performance After sharing schemes are applied. the execution time of each operation
which shares an operator with other operations is increased by the routing delay and possible
control delay. Besides the overhead caused by the sharing structure, the starting execution PS
time of some operations is postponed due to the sequence enforced by the sharing structure.

The performance and area effects of DFG mapping can be easily obtained by simulating
the mapped DFG and by counting the area of the mapped DFG. Furthermore, we need to
quantify these effects in terms of the kind of sharing scheme and the number of sharing

operations and shared operators, so that these quantities can be used in high-level design o
decisions such as sequencing and allocation problem.
Example [effects of sharing schemes with fixed allocation having fixed sequence]
Let us analyze the effects of sharing schemes shown in Figure 30. Assume that there are N PY
operations which share one operator, where N > 1. Let the area cost of the operator for
the operation be A,p; let the area cost of the n-input MSelector (n-output MDistributor) be
nx* A, (n* Ag) with the constant factor A, (A,); and let the area cost of the n-bit counter be
n * A. with the constant factor A.. The area gain/overhead analysis for the sharing scheme
is shown as follows:
®
Area gain: (N — 1) operators;
Area overhead: an N-input MSelector,
an N-input MDistributor, and
a [loga N1-bit counter;
Total area gain: (N — 1) * A, — N * (A, + Ag) — [logaN| * A, ®

Based on the analysis of our design library, the forward propagation delay time of the
n-input MSelector, F Ppgseiector(n), can be formulated as ki + [logan] * ki, where ki, k;
are constant factors and k; > k; [33]. Generally we can ignore k;, and assume that
F Prgsetector(n) = F PuSetector is a constant. The backward propagation delay time of the)
n-input MSelector, B Pafseiector(n), and the forward propagation delay time of the n-output
MDistributor, F Pyspistributor (1), and the backward propagation delay time of the n-output
MDistributor, BPprpistrisutor(n), can be similarly formulated, so they are assumed to be con-
stants BPuysetectors F PMDistrivutors and B Pargpisiributor- The performance overhead analysis
for the sharing scheme is shown as follows: o

Overhead of forward propagation delay time: FP,, = F Ppyselector + F PMDistributor
Overhead of backward propagation delay time: BP,, = BPupseitector + BPuMDistributor

Furthermore, F Parseiector and F Pypistributor can be assumed to be zero in the sharing struc-
ture due to the parallelling of the data computation and the control generation, which is a e
hardware implementation issue and is not discussed in this report.

40

]

& @

01 02 o

I2

Y
®-GC

O
o

Figure 35: Local Transformation 1.

6.2 Local Transformations

Algorithmic transformations can be used to improve the design efficiency at the behav-
ioral level so that the resulting design description can generate a suitable implementation
[27, 29, 31]. Most transformations use the peephole optimization technique, used similarly
in the compiler design, and are therefore called local transformations in this context. The
biases in behavioral level descriptions are caused by the designers’ coding style or gener-
ated by other transformations such as sharing schemes. Transformations are developed to
reduce the number of operations, to reduce the size of control structures, to reduce length
of the critical path, to remove the redundancy, and so on. Snow has systematically devel-
oped transformations for the C-MU RT-CAD system [27]. Most of Snow’s transformations
are general enough to have analogous transformations in our system such as dead activity
elimination, redundant activity elimination, select factoring/combination, etc., so we will not
describe the available transformations in our system. Instead, we will present a few transfor-
mations to show the role of tokens and data types in DFG/EDFG transformations. Because
of the token model, the correctness of these transformations can be easily proven by symbolic
(token) simulation. Later we present one transformation which is often used to reduce the
routing part and the control part of sharing structures, and it will be extensively used in the
examples of the next section.

Symbolic token simulation Figure 35 is a simple local transformation. We can show
that these two DFGs are equivalent by simulation. Given a token with data value d; nd
data type t; for input Ii for 7 = 1,2 to both DFGs, a token is produced with data value
(dy,d,) and data type (t1,t2) at each of outputs Ol and O2 for both DFGs. Therefore, they
are functionally and behaviorally equivalent.

Data type matching In the transformations of DFG, we need to consider not only the
equivalence of token generation but also the equivalence of the token value and the token
type. Figures 36(a) and (b) are two DFGs, which look equivalent. We can show these two
DFGs are not equivalent by simulation. Given a token with data value d; and data type ¢; for

41

N1 I3

213
R I3 I

n ni2imn
SN R C S C
o 0 o o

(@ (b) (© (d)

Figure 36: Local Transformation 2.

input Ii for i = 1,2,3 to both DFGs, a token is produced with data value (d;, (ds,d3)) and
data type (t1, (t2,¢3)) at the output of Figure 36(a), and a token is produced with data value
{d1,d2, d3) and data type (t,,,t3) at the output of Figure 36(a). They are the same in terms
of hardware implementation, but they are not the same in terms of the DFG specification.
With atomic functions for data type conversion, Figures 36(b) and (c) are equivalent, and
Figures 36(a) and (d) are equivalent. R([1,102,202]) and R([1,[2,3]]) are atomic functions
called routers in our system. Router functions rearrange input data by copying, repeating,
and shuffling input data. The notation of router functions is based on Backus’ FP [2], where
t is the FP selector function, square bracket [...] is the functional form of construction, and
circle o is the functional form of composition. These are defined as follows:

i (T1,22,...,) = i, for any positive : < n;

Uinfooofoliz = (itz, farz, ..., faiz);
fog:z = f:(9:12),
where z and (z1,2,...,z,) are input objects of functions, and fi, f2, ..., fa, f, and g are

functions, e.g., FP selector functions. Therefore, we can show that Figures 36(b) and (c) are
equivalent as follows.

[1,1 02,202] : (d1,<d2,d3)) = (1 : (d1,<d2,d3>),
102: (d[, (dz,d:;)),? 02: (d[, (dz,da))
= (d;,l : (dz,d3),2 : (dz,d;;))
(d1,d2, ds)

42

X X

¢ '

Distributor Distributor

.-Pq. -
Selector

(a) Before transformation (b) After wansformation

Figure 37: Local Transformation 3.

Similarly, we can show that Figures 36(a) and (d) are equivalent, i.e.,

(1,(2,3]]) : (d1,d2,d3) = (dy, {d2,d3))

A transformation for sharing scheme reduction Figure 37(a) is a DFG under a special
condition, which often appears after sharing schemes are applied. In this figure, two output
ports of an MDistributor are connected to two input ports of an MSelector, and the order
of tokens which pass from the input of the MDistributor to the output of the MSelector are
preserved, e.g., in Figure 37a), j obtains a token after ¢ obtains a token from X, then Y
obtains a token from ¢ after Y obtains a token from p. In this situation, we can combine
these two paths into one with the MDistributor reducing one output port and the MSelector
reducing one input port. In addition to reductions these ports, the control token generation
for the MDistributor and the MSelector needs to be changed for the transformed DFG.
Figure 37(a) is transformed to Figure 37(b) with one possible mapping for the outputs of
the MDistributor and the input of the MSelector as shown below.

Output port index mapping for the MDistributor with ¢j = i:

Before transformation After transformation
z z, ifo<z<y
%, ifz=1to0rz=y;

z—-1, ifi<cz<nandz#j.

Input port index mapping for the MSelector with pg = p:

Before transformation After transformation
y v, if0<y<p;
P, fy=pory=g;

y—1, ifp<y<mandy#q.

43

6.3 Sequencing and Allocation

Among the many different sharing schemes previously mentioned. the sharing scheme with
fixed allocation and fixed sequence is often used in digital system design. However. a de-
signer needs to determine not only the allocation of operations but also the execution order
of operations, and this determination will have a significant impact on the performance and
area of the final implementation. This problem is analogous to the scheduling and allocation
problem in synchronous system synthesis, but with no clock-controlled time step, i.e., the
scheduling problem in an asynchronous system cannot be viewed as a partitioning of oper-
ations into time steps as in synchronous systems [11, 18]. This problem is closely related
to the resource-constrained project scheduling problem {3], and the temporal aspects of this
scheduling problem can be equivalently represented by partial orders [22]. Therefore, this
problem is called the sequencing and allocation problem in asynchronous system synthesis.

Based on the goal of th: synthesis task, there are many kinds of synthesis problems, e.g.,
the cost-constrained synthesis problem and the performance-constrained synthesis problem
[24]. In this report, we only formulate and provide algorithms for the resource-constrained
sequencing and allocation problem for non-pipelined systems.

3.1 Problem Statement

The problem that we are addressing is how to sequence and allocate operations of an asyn-
chronous system for a given set of resources (operators) so that the system will perform
efficiently. The behavior of an asynchronous system is described by a DFG. There are a set
of n operations in a system, each of which corresponds to an atomic function in the DFG
and belongs to a specific type. Data precedence among operations is implied by the DFG de-
scription, where each directed arc represents the direction of data to be transferred between
two operations. There are k types of operations in the system. For each type of operation,
there is at least one resource operator. Each operator is associated with a computation delay
time and a backward control delay time, which correspond to the DFG timing parameters
Drp and Dpgp respectively. The operators of the same type don’t have to be identical, i.e.,
they don’t have to have the same values of Drp and Dgp. For a non-pipelined system,
the system performance is determined by the completion time. (For a pipelined system,
the system performance is determined by the throughput rate or the pipeline period.) Our
synthesis problem of a system involves following tasks:

e What operator is each operation allocated to?

e What is the execution order of these operations which are allocated to the same oper-
ator?

The objective of the problem is to minimize the system completion time. Currently our
synthesis algorithms assume that the DFG is acyclic, so the user needs to unroll the loops
or choose the loop body before synthesizing the system.

44

FP BP
ADDERI | addl | | add3 | |

. |
ADDER? | add2 | |

ADDER3 add4 | |

(a) A five-addition DFG (b) The Gantt chart of a sequence and allocation

Figure 38: A simple example of the sequence and allocation problem.

6.3.2 Timing Model for Sequencing and Allocation Problem

The time model used in the sequence and allocation is the same model that is described
in Section 5.4.2. Here we want to show how this timing model is used in the sequence and
allocation problem and how the sharing effects discussed in section 6.1.4 are used in this
timing model for synthesis.

Computation time and resource occupied time In an asynchronous system the time
interval during which an operation is computed by an operator, and the time interval during
which the operator is occupied by the operation, are different. In Figure 21, F'P; corresponds
to the computation time of an operation at stage ¢, and (F P, + BF,;) corresponds to the time
that stage i is occupied by the operation for a non-pipelined system operation. The time
that stage ¢ is occupied by an operation is greater than (FP; + BF;) for a pipelined system
operation. E.g., (FPy + BPF, + §) is the time interval during which an operation occupies
stage 0 for the pipelined operation in Figure 21, where § is the time that the operation
is waiting for the input register of the next stage to be available. Since we are dealing
with non-pipelined system operation, we don’t need to worry about é at this time. Figure
38(a) is an example DFG with five additions. There are three identical adders available,
ADDERI1, ADDER2, and ADDER3, and they have Drp = 3 and Dpp = 3. For convenience,
we use a two-input addition function to reduce the analysis complexity and we do not
consider the sharing overhead in this example. Figure 38(b) is a Gantt chart, representing
a sequence and allocation for these five additions, where dashed arrowed lines represent the
data precedence of the DFG. In this example, add4 can start when both addl and add2
finish their computation because add4 does not share the same operator with either. On the
other hand, add3 can start only when addl releases the ADDER] because they are both
allocated to ADDER1 and add3 is sequenced after addl.

45

Sharing effects The sharing scheme used in the sequence and allocation in this report
is the sharing scheme with fixed allocation and fixed sequence. The sharing effects of
this scheme have been analyzed in Section 6.1.4. Since we are dealing with the resource-
constrained synthesis task, the area cost is determined when the resource constraints are set.
Therefore, the area cost is not considered in this synthesis algorithm. On the other hand.
FP,, and BPF,, play important roles in the measure of the system performance. and they
will inflate the length of the computation delay time Drp and the backward propagation
delay time Dpp of an operation. The system completion time is determined mainly by the
computation delay times of the operations in the system. Fortunately. F'P,,. can be assumed
to be zero, so we can separate the sharing penalty from the system completion time, though
BP,, may still have certain effects on the system performance.

6.3.3 Algorithms

In this report, we only present two algorithms to solve the resource-constrained sequencing
and allocation problem. The details about theoretical basis of these methods can be found
in [3]. They are a heuristic algorithm and a branch and bound algorithm.

Heuristic algorithm This algorithm uses the longest path delay from the output of the
node to the output of the DFG to prioritize all operations in the DFG, then schedules
these operations one by one to available resources. The delay parameter used for the path
delay and the operation delay is the computation delay of each node, while the backward
control delay is only used to determine the resource occupation time by an operation. Let
S be the prioritized list. Let Tyare(v), Temp(v), and Tretease(v) represent the starting time,
the computation completion time, and the resource-released time of each operation v. The
algorithm is described below.

1. Determine the critical path delay of the DFG, the longest path delay from the input
of the DFG to the input of each node, and the longest path delay from the output of
each node to the output of the DFG.

2. Find the operations which only receive data from input ports of the DFG; according
to the longest path delay from the output of each node to the output of DFG, sort
these nodes into list S in non-increasing order.

3. If S is empty, then exit.
Let v is the first operation in S.

4. Assign operation v to a resource and schedule the operation to intervals [Tytare(v), Temp(v)]
and [Temp(v), Tretease(v)] such that
® Tytare(v) 2 Temp(w) for every w which is a parent node of v.
® Temp(v) — Tutare(v) equals the computation delay time of the operator(resource).
® Trcicase — Temp(v) equals the backward control time of the operator.

o The resource to be assigned is available during the time [Tyari(v), Treiease(v)].

46

5. v is scheduled, and it is removed from 5.

6. Find any child of v whose parents are all scheduled, and put it into S with proper
ordering.

7. Go to step 3.

This algorithm is a polynomial algorithm with O(n?), where n is the number of nodes in the

DFG.

Branch and bound algorithm A schedule is an active schedule if we cannot find another
schedule by simply shifting a scheduled node to an earlier starting time. It has been shown
that an optimum schedule is an active schedule [3]. This algorithm exhaustively enumerates
all active schedules to find the optimum schedule, and the branch and bound technique is
used to reduce the search space. We will not discuss the detail of this algorithm, which can
be found in related literature {3].

7 Examples

Two examples are presented in this section. The first design is a 16-bit unsigned add-and-
shift multiplier, and the second design is a 16-point, 16-bit FIR digital filter. We will present
these examples following the design procedure shown in Figure 1.

7.1 Multiplier

An asynchronous 16-bit unsigned add-and-shift multiplier takes an input, which is a (16b,
16b) multiplier-multiplicand pair, and produces an output, which is a 326 multiplication
result.

DFG description Figure 39 is the input DFG description of the multiplier, where ASH,
f1, and f2 are atomic functions. ASH (add-and-shift) takes the multiplicand (M), a par-
tial multiplication result (A4,Q’), and a partial multiplier (Q") to generate a new partial
multiplication result and a new partial multiplier by means of the following operations [12]:

{ov,A} — A+ M *Qrss,

{A,Q} — {ov,A,QumsB.Lsa+ },

where A, @, and M are 16-bit, Q is formed by {Q’,Q"}, ov is an 1-bit overflow for addition,
and LSB*! is the second least significant bit. f1 is an atomic function that assigns zero as
the initial partial multiplication result into the input multiplier-multiplicand pair, i.e., f1:
(multiplier, multiplicand) — (16’h0000, multiplier, multiplicand); f2 is the router R([101,10
2,...,1016,201,202,...,2016]) that extracts the output of the multiplier from the output
of the last ASH, i.e., f2: (MS16b_product, LS16b_product, multiplicand) — 32b_product.

47

\

@@

ashl3

ashld

>

-~
[

]

[N
Al

-t

Figure 39: Input DFG description for the 16-bit add-and-shift multiplier.

Sequencing and allocation This example has a special structure with all atomic func-
tions linearly connected. Initially we are more interested in optimizing the system throughput
rate for this design, i.e., minimizing the pipeline period. Since we don’t have an algorithm to
solve this problem, we manually synthesized the design with one, two, four, and eight ASH
units. Figure 40 shows the Gantt chart of the pipelined system synthesis result of the design
with two ASH units, where the sixteen ASH operations be labeled addl to add16 from sys-
tem input to system output, and the two ASH units be labeled ASHER1 and ASHER2. We
also synthesize this design by minimizing the system completion time. Figure 41 shows the
Gantt chart of the non-pipelined system synthesis result of the design with two ASH units.
Comparing Figure 40 and 41, we can easily observe different results for different objectives.
We also find two ASH units are enough to have the minimum completion time for this design,
i.e., more ASH units will not provide any better result. In the following steps, we only show
the intermediate formats of our design procedure for the sequencing and allocation results
of Figures 40 and 41.

Sharing schemes and local transformations The next step is to apply the sequencing
and allocation result to the input DFG using the sharing scheme with fixed allocation and
fixed sequence. Figures 42 and 43 are the mapped DFGs corresponding to the synthesis
results in Figures 40 and 41, where the number of paths among ASHERs in Figure 42 and

48

n
ASHER1 | [(ashl [] © 0 o
ASHER2 o o o ash16 | |

7— 7

Figure 40: The Gantt chart for 2-ASH pipelined system synthesis.

ASHER]1

ASHER2 @ i::: ashld |

/L
[4

Figure 41: The Gantt chart for 2-ASH non-pipelined system synthesis.

the number of paths among ASHERs in Figure 43 are the same as the number in Figure
39, i.e., there is a separate path between each pair of add: and add(: + 1) for ¢z = 1,...15.
After applying the general sharing scheme, we find that many paths can be merged. By
applying the local transformation of Figure 37, Figure 42 is reduced to Figure 44, and Figure
43 is reduced to Figure 45. The control part of the sharing structure depends on how the
inputs of the MSelector and the outputs of the MDistributors are routed. For example, in
Figures 42 and 43, the control part CF{s8 generates the sequence (0,1,2,3,4,5,6,7) repeatedly
for both the MSelector and the MDistributor, and the control part CFfs8’ generates the
sequence (0,1,2,3,4,5,6,7) repeatedly for the MSelector and the sequence (1,2,3,4,5,6,7,0)
repeatedly for the MDistributor; in Figures 44 and 45, the control part CFfs8” generates
the sequence (0,1,1,1,1,1,1,1) repeatedly for the MSelector and the sequence (1,1,1,1,1,1,1,0)
repeatedly for the MDistributor.

Register minimization in EDFG Before the RTL netlist of the design is generated,
we need to transform the DFG description into an EDFG description. We also can remove

49

Iport - - B
— — ®
f1) | .
: [
1
] N AR
. = x Y ¢ 3 . f. ! ’ i i !
Selector S Se.ector < | C ‘
Ut 1 ['
I
-
£38° £58° l | ! ®
ASH ASH | |
\
i
Distrikbutor S Distributor . <
[] 1 A
1
1 ®
£2 ! ‘
.
ez
Fi: 're 42: Mapped DFG description with two ASHERS for the pipelined system ®
r=-
o
L o ; ®
T [
1 2 [
Selector ©
CFfst .
ASH
Distrilutor >
! Selector * 3 .
({1
ASH
. Distrilutor . 2 > .
f£2
Lopere
®

Figure 43: Mapped DFG description with two ASHERSs for the non-pipelined system.

30

Figure 45: Reduced DFG description with two ASHERs for the non-pipelined system.

91

1

. |
——
’]

-~
~_-

Dee_31h1 Owc_dc)
we_3tl 1 Dec_3t1)2

Nl SNt

Figure 47: EDFG description with two ASHERs for the non-pipelined system.

| I
‘ !
BN v,
PRaAN Y
’ \ - - i \
COUNTSI . . COUNTS
A ! \ 4

|, Selectorct——— L

\\Jr"’, !

JasH
\ i

A}
Dec_3tl N Owc_del:2
=T =T

~ . ~ ’
o e

erifJ
/'- \\
V£l
\~ _l
/ \
COUNTS!
Fos = A 1
R L] 1 ~ A4
! Selectorck——
\Tz‘
77N
ASH
'\ * 9000
\~ ‘I
l" -\\
\Fork ¢
,° \‘ v ’
+ ASH » \
N L
I‘ ‘\ l‘ ~\
7 \ / \
L Owc_3tl 1 Dee_3tl 2
% LN AR N 4
. . R N L
upi.s:rﬂn:o:ll———
II' "\\ e
\£2;
N, .’
r -i‘ 1]
Lq.,o. J

unnecessary registers from the mapped EDFG description. Currently, we do not have an
algorithm to deal with the register minimization problem, so we manually do the job in this
design. Figures 46 and 47 are the EDFG descriptions corresponding to Figures 44 and 15
with some registers removed. In Figures 46 and 47, the loop of a COUNTS, two Is. and
a 3-input phantom MFork forms a 3-bit counter, and Dec.2tl and Dec.2t2 convert the 3-
bit sequence {0,1.2,3.4,5,6,7) into the 1-bit sequence (0,1,1,1,1,1,1.1) and the 1-bit sequence
(1,1,1,1,1,1,1,0), respectively.

The last step is to map the EDFG description into an RTL netlist for layout generation.
The implementation results will be shown in Section 7.3.

7.2 FIR digital filter

The second design is a 16-point, 16-bit FIR digital filter. The convolution sum of the filter
is

15
y(n) =Y h(k) * z(n — k)

k=0

A causal FIR system with linear phase has the property that
h(k) = (15~ k), for k=0,...,7

Therefore, the convolution sum can be reduced to the following form,

y(n) = D h(k)*(z(n—k)+z(n—15+k))

= h=(0) * (z(n) + z(n — 15)) +
h(1) * (z(n — 1)+ z(n — 14)) +

h(7) % (z(n - 7) + z(n — 8))

DFG description Figure 48 is the input DFG description of the FIR filter. There are
two inputs for this system: in_H is the 8b input for the initialization of system coefficient
h(i) for 0 < i < 7; inX is the 16b input for z(n) for n > 0. There is one 16b output,
out.Y, for y(n) for n > 0 in the system. In Figure 48 ADD, MUL, and f3 are atomic
functions. We use a fixed-point computation to implement this design, where the 16-bit
adder, ADD, and the 8-bit multiplier, MUL, are used to manipulate 16-bit data. f3 is
the router R([1,2,3,4,5,6,7,8]), which truncates the last 8 bits from the 16-bit output of
the ADD, so the following MUL can have a proper 8-bit input. In Figure 48, CFfs8.1 and
mem_H are macro functions: CFfs8.1 generates the sequence (0,1,2,3,4,5,6,7) once after the
system is started, so eight data tokens read in from in_H are distributed to proper mem_Hs
for h(0) to h(7); mem_H, whose DFG description is shown in Figure 49, reads in a data

53

hS hé h?

. Distr or >
on_B on_8 ?# % on @)
hO hl h2 h3 h4

] ~e000 riaig
ok
()

(s
(1)
° (8
(=)
()
(=)
(=)
(oport]
out_Y

Figure 48: Input DFG description for the FIR digital filter.

()
(=)
(=)
©
=)
¢
(=)
(=)

54

r— -1
operT,
(b) DFG description of Seq01r

ouT

(a) DFG description of mem_H
Figure 49: DFG description for mem_H.

inlS 1inlé
~=1r-=1

inl2 in13, inld_ inlS
rM IutJ LP‘J

08 | Apd | Al0) inll - inl2, - dnld,
Lot Tox, Tort; Tort, Lo, Dpore,

Aol | o2 | Aol dod A0S i06 o dnl
o, Jeoct) Torey Ipom, Tom

e I Y

inl?7 127
r==n
L ¥
-1
Nl
output

Figure 50: DFG description of the FIR filter for synthesis.

39

token from its input and keeps producing the same data token forever. There are fifteen
data tokens in the DFG description of the FIR filter. These tokens represent the initial data
of r(n — k) for 1 < k < 15, and they have the data value zero in this specification. i.e..
r(—1)=z(-2) = ... = z(~15) = 0 with n = 0 initially. After A(¢) for 0 < ¢ < 7 are read.
each input r(n) will generate an output y(n).

Construct Name | Drp (nsec) | Dgp (nsec)
ADD 16.0 4.4
MUL 36.5 4.4
13 0.0 0.0
MFork_2 0.0 3.1
MJoin_2 0.0 0.0
overhead 0.0 14.3

Table 1: Timing parameters for the FIR filter synthesis.

Resource Constraints Completion time
(No. of operators) (nsec)
No. of MUL | No. of ADD | heuristic | Optimum
21 1 501.8 501.8
1 > 2 454.9 454.9
22 2 258.9 258.9
2 >3 250.1 250.1
3 >3 194.9 194.9
>4 3 186.8 186.8
4 >4 171.7 171.7
25 4 167.2 167.2
>5 25 164.5 164.5

Table 2: The sequencing and allocation results of the 16-point FIR filter.

Sequencing and allocation There are three types of atomic functions in this design, but
we only need to consider two of them, ADD and MUL, since the third, f3, can be implemented
by physically truncating unused data. Currently we use one kind of implementation for each
type of operation. Timing parameters for all implementations are shown in Table 1. Dgp
of MFork_2 and Dgp labeled “overhead”, which are both asterisked in Table 1, are zero due
to the parallel of data computation and control generation in the hardware implementation.
The overhead of the backward propagation delay time for the sharing scheme is 14.3 nsec.
For convenience, we remove the token input part of the DFG, and Figure 50 shows the DFG
without this token input part. We assume that all z(n —¢) for ¢ =0,...,15 and all A(j) for
3 =0,...,7 arrive at the same time, and we want to find the sequence and allocation with the

56

minimum system completion time for a given set of resources. Table 2 shows the sequencing
and allocation results, where our heuristic algorithm always found the optimum solution for
this example. In the following steps, we only show the intermediate format of our design
procedure for a design with 2 MULs and 2 ADDs. The sequencing and allocation result
of the 2-MUL, 2-ADD design is as follows, where the three columns give the computation
starting time, the completion time, and the operator released time.

ADD1:
add2: (0.0 16.0 34.7)
add3: (34.7 50.7 69.4)
adds: (69.4 85.4 104.1)
addé: (104.1 120.1 138.8)
add7: (138.8 154.8 173.5)
add8: (173.5 189.5 208.2)
adde: (208.2 224.2 242.9)
addg: (242.9 258.9 277.6)
ADD2:
addi: (0.0 16.0 34.7)
add4: (34.7 50.7 69.4)
adda: (69.4 85.4 104.1)
addb: (107.7 123.7 142.4)
addc: (142.4 158.4 177.1)
addd: (177.1 193.1 211.8)
addf: (224.2 240.2 258.9)
MUL1L:
mul2: (16.0 52.5 71.2)
mul3: (71.2 107.7 126.4)
mulb: (126.4 162.9 181.6)
mul?: (181.6 218.1 236.8)
MUL2:
mulil: (16.0 52.5 71.2)
muld: (71.2 107.7 126.4)
mulé: (126.4 162.9 181.6)
mul8: (189.5 226.0 244.7)

The corresponding Gantt chart of above result is shown in Figure 51.

Sharing schemes and local transformations The next step is to apply the sequencing
and allocation result to the input DFG using the sharing scheme with fixed allocation and
fixed sequence. Figure 52 is the mapped DFG corresponding to the synthesis results in
Figure 51, where net labeling is used to represent data path connectivity. For example, add1
is connected to the output of J1 and to the right input of JM1 in Figure 50, and these two
paths are labeled J1o and JMlr in Figure 52. Referring to Figure 51, add1 is scheduled as the
first operation at operator ADD?2, so Jlo and JMI1r are linked to the corresponding paths of
the sharing structure for the ADD2 in Figure 52, i.e., input port 0 of MSelector and output
port 0 of MDistributor for the ADD2. After applying the sharing scheme for the sequencing
and allocation result, we are looking for possible reduction on the mapped DFG. In this
design, there are two operands for each operation. In order to apply the same principle of
the local transformation in Figure 37, we need to have corresponding inputs and outputs of

37

FP(ADD) = 16.0 nsec
FP(MUL) = 36.5 nsec
BP(ADD/MUL) = 4.4 nsec
BP(overhead) = 14.3 nsec
>- Data Dependency

I"’DD

ceeup

cocnpe

add2 add3 addé add7 add8 adde addg

addSs

ADD1

addd _adde hddb dddc hdAd of
ADD2 mm‘ :
\\:‘ . '.E mul“l :a
MULL1 5 ||
: mul} 5 mul4 o mulg : mul
MUL2 | |

Figure 51: The Gantt chart for the 2-MUL, 2-ADD FIR filter.

two operations from the same sources and destinations. For example, (Jbl, Jbr) for addb and
(Jdl, Jdr) for addd come from the same sources MDistributor of MULI for both left operands
and MDistributor of ADD2 for both right operands, and they have the same destination,
MSelector of ADD2, through Jbo and Jdo in Figure 52. Therefore, we merge these two sets
to (Jbdl, Jbdr) and Jbdo. Similarly, (Jel, Jer) and Jeo for adde and (Jgl, Jgr) and Jgo for
addg can be merged to (Jegl, Jegr) and Jego. Figure 52 is thus reduced to Figure 53. The
control part of the sharing structure depends on how the inputs of MSelector and the outputs
of MDistributors are routed. For example, in Figures 52 the control part CFfs4, CFfs7,
and CFfs8 generate the sequence (0,1,2,3), the sequence (0,1,2,3,4,5,6), and the sequence
(0,1,2,3,4,5,6,7) repeatedly for both MSelectors and MDistributors respectively. In Figure
53, after local transformations, the control part CFfs4’ generates the sequence (0,1,2,3)
repeatedly for the MSelector and the sequence (0,1,1,2) repeatedly for the MDistributor; the
control part CFfs4” generates the sequence (0,1,2,3) repeatedly for the MSelector and the
sequence (0,1,2,2) repeatedly for the MDistributor. Similarly, we can find the corresponding
sequences generated by CFfs8’ and CFfs7’.

Register minimization in EDFG After applying the sequencing and allocation result
in Figure 53 to the original DFG description in Figure 48, we transformed the sequenced

38

cruz

Figure 52: Mapped DFG description for the 2-MUL 2-ADD FIR design.

59

3 4 SA2
Qv

CFA2

Figure 53: Reduced DFG description for the 2-MUL 2-ADD FIR design.

60

Distributor

i

h7

in X
r-=-"
,
‘hoete * noose ‘nooee “hstes asete 1]
v N LN LYo, LoV LoV
I3 \ ! \ , LY ’ Y] \ 4 \
“‘E‘oz):; "Forlf; -\\!"orl:; | Fork) 4 Fork, B Fo rk;

*neose hseee “nss “neese ! nose® ey “nte0e
7o) N P l A P N
'\Fork) l\Fork ; 4 Fork) t\Fork s \ Fork H \Fork; \Fork}

A Y . 4 ~ - ’ ~ . ’ Ay . # l Vo 7’ N . U .
- - . .Z . - ::>.' .S éf
! I‘JO \
\ Y
~

.
A
]

U

in

’ ~ ’ . .

CACACAVECA A O«

! Jotn) { Jatn } ! Jotn) {Jotn} ! Jotn { Jotn’ {
.

’
. . .

-E:‘ -l.-& -y

I
’

bua

QP 9P QP 9P QY
537 343

Figure 54: EDFG description for the 2-MUL 2-ADD FIR design (Part I).

~

61

.TI.E,T§

o
[11

LT

Selector

= - -..1? ——
Phbdy
’ \
« ADD »
1Y ’

(a) EDFG description of mem_H

ReEs ,5

| L
e

(Dlmmutor =

It

jsszsasio]

Q

I'o! k

.s.—/.l.L

*‘e 303}2 ope_ s

1__("_.

Oport
ouT

=

(b) EDFG description of CFfs8.1

Figure 56: EDFG description for mem_H and CFfs8.1.

DFG description into EDFG description. Then we removed unnecessary registers from the
mapped EDFG description. Figures 54 and 55 are the final EDFG description after manual
register minimization, where the EDFG descriptions of mem_H and CFfs3.1 are shown in
Figure 56. In the final EDFG description, COUNTY, COUNT7 and COUNTS are used to
produce the sequences (0,1,2,3), (0,1.2,....6), and (0.1,2,...,7) respectively, and Dec_itj_k is
a decoder function which converts a i-bit control signal to j-bit control signal with index k&
to distinct different decoders.

The last step is to map the EDFG description into RTL netlist for the layout generation.
The implementation results will be shown in Section 7.3.

7.3 Experimental Results

We have implemented the example designs discussed in the preceding section using a library
of asynchronous building blocks [32] composed with an industrial standard cell library, HP
C34100 [34], in a commercial CAD tool, Cadence Design Framework II”™. Both the RTL
netlist and the layout of these designs were produced '°. The performance of each design has
been simulated in a mix-mode simulator, Verilog-XL(®, using the model distributed with
the cell library, plus extracted wiring capacitances. The implementation and the simulation
of these designs at the layout level show the feasibility of our design method. To show
the effectiveness of the data flow model, we further compare the area/performance of these
designs obtained from our DFG/EDFG model with the area/performance obtained from the
final layouts.

To use the DFG/EDFG model, we need to know all the timing parameters, such as D,
Dgsty Dyp, Dyp, and Dy, during the course of synthesis procedure. Since the asynchronous
building blocks have been designed, these timing parameters are obtained by simulation.
Table 3 and Table 5 are the EDFG timing parameters for the multiplier design and for the FIR
design, respectively. The fanout/loading capacitance internal to each block is considered, but
the fanout/loading capacitance external to the block, which depends on the interconnection
of the block in a real design, is not considered currently. In Table 5, several modules, e.g.,
MSelector_4. have more than one set of timing parameters, which represent more than one
implementation for the same EDFG construct. The slow module is used for non-critical nodes
of the FIR filter design. We use “DFGsim” to label the performance measure of the design
from the simulation of the DFG/EDFG model. At the DFG/EDFG level, the area measure
of a design is the area sum of all asynchronous blocks used in the design, and the area of
each block is the area sum of all standard cells which implement the block. Therefore, no
wiring area is considered at the DFG/EDFG level. We use “Cell” to label the area measure.

The performance for a real layout is obtained by the simulation of standard cell netlist

19Design Framework II is a design framework, and it is a trademark of Cadence Design Systems, Inc. Cell
Ensemble is a standard cell placement and routing tool used in our experiments for the layout generation,
and it is a trademark of Cadence Design Systems, Inc. Verilog-XL is a mix-mode simulator, and it is a
registered trademarks of Cadence Design Systems, Inc. DRACULA is an IC layout verification system, and
it is a registered trademark of Cadence Design Systems, Inc.

63

Construct Name Dyp (nsec) | Dy, (nsec) | D,y (nsec) | D,y (nsec) | D,, (nsce)
(Ph) f1 0.00 0.00 — — —
(Ph) f2 0.00 0.00 — — —
(Ph) ASH 14.70 0.00 — — —
(Ph) COUNTz 1.70 0.00 — — —
(Ph) Dec.itj.k 2.10 0.00 — — —
(Ph) MSelector.2 6.03 1.83 — - —
(Ph) MDistributor2 9.19 1.53 — — —
(Ph) MFork.3 0.00 3.10 — — -
Storage(({16b,16b,16b)) — — 3.80 4.80 0
Storage(nb), for n < 4 — —_ 2.73 3.77 0

Table 3: Timing parameters for the EDFG in the experiment of the multiplier design.

Number of | Completion time (nsec) Pipeline period (nsec) Area (x10% u?)
shared units | Csim | DFGsim | Ratio | Csim | DFGsim | Ratio | Core | Cell | Ratio
16 311.14 | 299.80 | 0.961 | 24.25 23.30 0.964 | 12.377 | 7.236 | 0.585
8 418.66 | 397.56 | 0.950 | 65.38 60.40 0.924 | 16.302 | 9.857 | 0.605
4 475.61 | 442.28 | 0.930 | 131.51 | 120.80 | 0.919 | 8.532 { 5.183 | 0.607
2 (pipeline) | 504.10 | 464.64 | 0.922 | 263.80 | 241.60 | 0.916 | 4.231 | 2.605 | 0.616
1 519.70 | 476.02 | 0.916 | 528.82 | 483.20 | 0.914 | 2.124 | 1.371 | 0.645
2 (non-pipe) | 371.82 | 348.32 | 0.937 | 381.52 | 359.20 | 0.941 | 2.771 | 1.671 | 0.603

Table 4: Experimental results of the multiplier design.

with wiring capacitances derived from a parasitic extraction tool, DRACULA®, and it is
labeled “Csim”. The area for a real layout is obtained by the multiplication of the width and

the height of the layout. The area measured for the core size of the final layout is labeled
“Core”.

Table 4 gives the experimental results of the 16-bit multiplier. Figures 57 and 58 show
two layouts for the multiplier implementation. We found that our performance estimation
from the simulation of the DFG/EDFG model is within 91.6% to 96.4% of the final layout
performance measurement. The experimental result also shows that the cell area, which is
used as the area measurement in the DFG/EDFG model, approximately occupies 58.5% to
64.5% of the final layout.

Table 6 gives the experimental results of the 16-point 16-bit FIR filter. Figure 59 shows
one layout for the FIR filter implementation. Again we found that the performance esti-
mation from the simulation of the DFG/EDFG model is within 87.6% to 98.1% of the final
layout performance measurement. This experimental result also shows that the cell area
obtained from the DFG/EDFG model approximately occupies 56.2% to 59.4% of the final

64

Construct Name Dy, (nsec) | Dy (nsec) | D,y (nsec) | Dy (nsec) | Dy, (nsce)
(Ph) f3 0.00 0.00 = - —
(Ph) C('bl) 0.00 0.00 - — =
(Ph) ADD 11.60 0.00 = — —
(Ph) MUL 32.10 0.00 — — —
(Ph) COUNTz 1.70 0.00 — — —
(Ph) Dec.itj -k 2.10 0.00 — — —
(Ph) MSelector.2 8.87 6.28 — — —
(Ph) MSelector_3 8.92 5.91 — — —
(Ph) MSelector_4 #1 5.29 6.13 — — —
(Ph) MSelector_4 #2 8.92 6.59 — — —
(Ph) MSelector_5 6.77 6.90 — — —
(Ph) MSelector_6 7.08 6.50 — — —
(Ph) MSelector_7 6.87 6.72 — — —
(Ph) MSelector.8 10.26 7.64 — — —_
(Ph) MSelector.10 6.51 7.77 - — —
(Ph) MDistributor2 9.19 1.53 — — —
(Ph) MDistributor.3 #1 5.18 2.68 — — —
(Ph) MDistributor 3 #2 8.72 2.84 — — —
(Ph) MDistributor.5 5.96 3.72 — — —
(Ph) MDistributor8 #1 6.30 3.75 — — —
(Ph) MDistributor 8 #2 11.00 3.92 — — —
(Ph) MDistributor.10 6.96 5.66 — — —
{Ph) MFork.2 0.00 3.10 — — —
(Ph) MFork_3 0.00 3.10 — — —
(Ph) MJoin_2 3.10 0.00 — — —
Storage((8b,8b)) — - 2.80 3.83 0
Storage((16b,16b)) — — 2.80 3.83 0
Storage(8b) #1 — — 2.80 3.83 0
Storage(8b) #2 — — 4.25 5.27 0
Storage(16b) #1 — — 2.80 3.83 0
Storage(16b) #2 — — 4.25 5.27 0
Storage(nb), for n < 3 — — 2.73 3.77 0

Table 5: Timing parameters for the EDFG in the experiment of the FIR design.

of shared units | Completion time (nsec) Pipeline period (nsec) Area (x10° u?)

mult. adder Csim | DFGsim | Ratio | Csim | DFGsim | Ratio [Core Cell | Ratio
1 1 615.84 } 539.40 | 0.876 | 627.20 | 552.41 | 0.881 | 16.434 | 9.583 | 0.583
2 2 208.53 | 273.85 | 0.917 | 307.32 | 283.90 | 0.924 | 20.923 | 12.419 | 0.594
3 3 210.40 ! 202.68 | 0.963 | 217.01 | 212.88 | 0.981 | 23.707 | 13.318 | 0.562

Table 6: Experimental results of the FIR design.

65

layout.

The Csim (actual extracted) value is larger than the DFGsim (estimated) value for each
design, due to the following reasons.

1. The operation fanout and the control fanout external to the basic blocks are not con-
sidered in the current model.

2. The wiring delays between modules are also not considered in the current model; this
delay cannot be accurately estimated until the actual layout is generated.

3. Some extra buffers were needed between some modules to comply with a CAD tool
limitation in the current implementation, and these extra delays were not known during
synthesis and analysis of the design at the DFG/EDFG model.

Despite these factors, our high-level timing model is quite accurate; the DFGsim/Csim ratio
is 98.1% for the best case and is 87.6% for the worst case in all our experimental results.

It is common to use the cell area to estimate the routing overhead before placement
and routing [37]. From above two examples, the Cell/Core ratio is within 56.2% to 64.5%.
Although the area ratios for the above design are not fixed, these ratios vary in a certain
small range. Therefore, the area measure by the cell area in the data flow model is sufficient
for high-level synthesis algorithms.

Since we have an accuracy timing model and a proper area measurement at the data
flow level, synthesis results represent the design space properly. One of the main rea-
sons that synthesis algorithms explore the design space properly is that in our system
the area/performance overhead of resource sharing, such as control units and multiplex-
ers/demultiplexers, are accurately reflected and predicted. This allows us to estimate both
the performance and the area at the data flow level quite accurately.

8 Conclusion

In this report, we have presented a design method for asynchronous systems based on the
data flow specification. An asynchronous system is seen as a set of communicating processes,
and the token data flow model is used to describe the behavior of the system. This design
method not only provides a high-level description language, but also provides a systematic
transformation within the data flow model to support high-level synthesis such as sequencing
and allocation, sharing schemes, local transformations, and register minimization. Finally,
the data flow specification is transformed into an EDFG description which is sufficient for
layout realization.

In order to make the synthesis result useful, we have derived a timing model for the data
flow specification so that the synthesis algorithms have an accurate and practical model.
Experimental results show the effectiveness of using the timed data flow specification to
design, analyze and synthesize asynchronous systems. Experimental results also show that

66

the accuracy of our timing model at the data flow model is within 90% of the actual imple-
mentation.

Many other issues regarding the design of basic asynchronous blocks and the hardware
implementation have not been covered in this report. but they play an important role in real-

izing and demonstrating this design method. The detail of the design of basic asynchronous
blocks can be found in {32].

Acknowledgement

The authors thank Cesar Pina and Wes Hansford for offering the circuit design environ-
ment at MOSIS, allowing us to easily verify our ideas. We appreciate the use of the MOSIS
netlist-to-parts service, standard cell library, and implementation tools. The authors also
thank Professor Alice Parker for her critiques and comments which have sharpened the this
work in high-level synthesis. The authors also thank Jeff Sondeen for his encouragement and
many helpful discussions. He not only corrected our writing errors but provided critiques
and comments which have sharpened the ideas of this report. The authors also thank Anne
Marie Edenhofner for her friendship and her patience to review the preliminary version of

this report. She not only corrected several grammatical errors but also discussed with us the
issue of writing style.

67

Lk

X
D

Do

!
X

!
X

:
X

3515

]
2
7
X

:
XD

>

3
XX

ey

X

X

=1

=3

X

=

:
X

!
X

e

Xy

’v“:‘nv

X3

>x<t‘ll

thi

[IHIRIEL

| e o o o o . — . o

”r

"

2R O P P P P

cjos

wos

cfos

T
X
X
X
X
X

e

[31} I>Av‘
lﬂ‘lsx‘

[(211t} m

WETY

were 1>x<
zv:m
vrebX]

Figure 57: Layout for the 2-ASH pipelined multiplier design.

68

>

X

<KIXIXIN

XIXIXIX]

XIXIXXIXIXXXIX

NRRRKIX

DRI PRI

X

Figure 58: Layout for the 2-ASH non-pipelined multiplier design.

69

Figure 59: Layout for the 2-ADD 2-MUL FIR design.

70

References

[1] V. Akella and G. Gopalakrishnan. “SHILPA: A High-Level Synthesis System for Self-
Timed Circuits”. In Proceedings of the [CCAD-92, pages 537-391. 1992.

[2] J. Backus. “Can Programming Be Liberated from the von Neumann Style? A Functional
Style and Its Algebra of Programs”, The 1977 Turing Award Lecture. Communications
of the ACM, 21(8):613-641, 1978.

(3] K. R. Baker. Introduction to Sequencing and Scheduling. John Wiley & Sons, 1974.

(4] E. Brunvand. Translating Concurrent Communicating Programs into Asynchronous

Circuits. Technical Report CMU-CS-91-198, School of Computer Science, Carnegie
Mellon University, September 1991.

[5] E. Brunvand and R. F. Sproull. Translating Concurrent Communicating Programs
into Delay-Insensitive Circuits. Technical Report CMU-CS-89-126, School of Computer
Science, Carnegie Mellon University, April 1989.

[6] S. M. Burns and A. J. Martin. Synthesis of Self-timed Circuits by Program Transfor-

mation. Technical Report 5253:TR:87, Dept. of Computer Science, California Institute
of Technology, 1987.

[7] T.-A. Chu. Synthesis of Self-timed VLSI Circuits from Graph Theoretic Specifications.

Technical Report PhD thesis, Dept. of EECS, Massachusetts Institute of Technology,
September 1987.

[8] A. L. Davis and R. M. Keller. “Data Flow Program Graphs”. [EEE COMPUTER,
15(2):26-41, 1982.

[9] J. C. Ebergen. Arbiters: An Exeicise in Specifying and Decomposing Asynchronously
Communicating Components. Technical Report Technique Report CS-90-29, Dept. of
Computer Science, University of Waterloo, July 1990.

[10] A. D. Friedman and P. R. Menon. Theory and Design of Switching Circuits. Computer
Science Press, Inc., 1975.

[11] D. Gajski et al. High-Level Synthesis - [..ction to Chip and System Design. Kluwer
Academic Publishers, 1992.

(12] J. P. Hayes. Computer Architecture and Organization. McGraw-Hill, New York, second
edition, 1988.

[13] I Koren and G. M. Silberman. “A Direct Mapping of Algorithms onto VLSI Processing
Arrays Based on the Data Flow Approach™. In Proceedings of the 1983 International
Conference on Parallel Processing, pages 335-337, 1983.

71

[14] L. Lavagno. K. Keutzer, and A. Sangiovanni-Vincentelli. “Algorithms for Svnthesis
of Hazard-free Asynchronous Circuits”. In Proceedings of the 28th Design Automation
Conference, pages 302-308, 1991.

[15] K.-J. Lin and C.-S. Lin. “"Automatic Synthesis of Asynchronous Circuits™. In Proceedings
of the 28th Design Automation Conference, pages 296-301, 1991.

[16] A. J. Martin et al. The Design of an Asynchronous Microprocessor. Proceedings of the
Decennial Caltech Conference on VLSI, pages 351-373, March 1989.

(17] E. J. McCluskey. Introduction to the Theory of Switching Circuits. McGraw-Hill, New
York, 1965.

[18] M. C. McFarland, A. C. Parker, and P. Camposano. “The High-Level Synthesis of
Digital Systems”. Proceedings of the IEEFE, 78(2):301-318, 1990.

(19] B. Mendelson, B. Patel, and I. Koren. “designing special-purpose co-processors using
the data-flow paradigm”. In Advanced Topics in Data-Flow Computing. editted by J.-L.
Gaudiot and L. Bic, Prentice-Hall Inc., pages 547-570, 1991.

[20] B. Mendelson and G. M. Silberman. “Mapping Data Flow Programs on a VLSI Array
of Processors”. In Proceedings of International Symposium on Computer Architecture,
pages 72-80, 1987.

[21] T. H.-Y. Meng, R. W. Brodersen, and D. G. Messerschmitt. “Automatic Synthe-
sis of Asynchronous Circuits from High-Level Specifications”. IEEE Transactions on
Computer-Aided Design, 8(11):1185-1205, 1989.

[22] R. H. Mohring. “algorithmic aspects of comparability graphs and interval graphs”.
In Graphs and Orders - The Role of Graphs in the Theory of Ordered Sets and Its
Applications. editted by I. Rival, NATO ASI Series, pages 41-101, 1984.

[23] C. E. Molnar, T.-P. Fang, and F. U. Rosenberger. “Synthesis of Delay-Insensitive
Modules”. In 1985 Chapel Hill Conference on VLSI, pages 67-86, 1985.

[24] N. Park and A. C. Parker. “Sehwa: A Software Package for Synthesis of Pipelines from
Behavioral Specifications”. IEEE Transactions on Computer-Aided Design, 7(3):356-
370, March 1988.

[25] C. V. Ramamoorthy and G. S. Ho. “Performance Evaluation of Asynchronous Con-
current Systems Using Petri Nets. [EEFE Transactions on Software Engineering, SE-
6(5):440-449, 1980.

[26] C. L. Seitz. “System Timing”. In Introduction to VLSI Systems. by C. Mead and L.
Conway, Addison Wesley, pages 128-262, 1980.

[27] E. A. Snow. Automation of Module Set Independent Register-Transfer Level Design.
Technical Report Ph.D. Thesis, Electrical Engineering Department, Carnegie-Mellon
University, April 1978.

72

(28] I. E. Sutherland. *MICROPIPELINES”, The 1988 Turing Award Lecture. Communi-
cations of the ACM, 32(6):720-738, 1989.

[29] H. Trickey. “Flamel: A High-Level Hardware Compiler”. [EEE Transactions on
Computer-Aided Design, 6(2):259-269, March 1987.

[30] J. L. A. van de Snepscheut. “Deriving Circuits from Programs”. Third Caltech Confer-
ence on Very Large Scale Integration, pages 241-256, March 1983.

[31] R. A. Walker and D. E. Thomas. “Design Representation and Transformation in The
System Architect’s Workbench”. In Proceedings of the ICCAD-87, pages 166-169, 1987.

[32] T.-Y. Wuu. A Data-Driven Model for Asynchronous System Synthesis. Technical Re-

port Thesis Proposal, Electrical Engineering-Systems, University of Southern California,
December 1991.

[33] T.-Y. Wuu and S.B.K. Vrudhula. A Design of a Fast and Area Efficient Multi-input
Muller C-element. IEEE Transactions on VLSI Systems, 1(2):215-219, 1993.

[34] The HP C34100 Standard Cell Library Data Manual. Hewlett-Packard Company, Inte-
grated Circuit Business Division, May 1992.

[35] Guidelines for Using The MOSIS Netlist-to-Parts Service, ViewLogic CMOSN Design
Kit. USC/ISI, MOSIS Project, October 1992.

[36] The MOSIS Service. USC/ISI, MOSIS Project, July 1993.
[37] MOSIS prices and gate equivalents. Tanner Research, April 1989.

73

